Tensor fields of type (0,2) on linear frame bundles and cotangent bundles
Guillermo G. R. Keilhauer (2000)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Guillermo G. R. Keilhauer (2000)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Jacek Dębecki (2006)
Annales Polonici Mathematici
Similarity:
We give a classification of canonical tensor fields of type (p,0) on an arbitrary Weil bundle over n-dimensional manifolds under the condition that n ≥ p. Roughly speaking, the result we obtain says that each such canonical tensor field is a sum of tensor products of canonical vector fields on the Weil bundle.
Lukáš Rachůnek, Josef Mikeš (2005)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Similarity:
The paper deals with tensor fields which are semiconjugated with torse-forming vector fields. The existence results for semitorse-forming vector fields and for convergent vector fields are proved.
Jacek Dębecki (2007)
Annales Polonici Mathematici
Similarity:
This paper contains a classification of all linear liftings of symmetric tensor fields of type (1,2) on n-dimensional manifolds to any tensor fields of type (1,2) on Weil bundles under the condition that n ≥ 3.
Doupovec, Miroslav, Kurek, Jan
Similarity:
Araujo, José, Keilhauer, Guillermo (2006)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity: