Displaying similar documents to “An abstract setting for boundary problems with affine symmetries”

A perturbation problem in the presence of affine symmetries

Tullio Valent (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

An approach to a local analysis of solutions of a perturbation problem is proposed when the unperturbed operator has affine symmetries. The main result is a local theorem on existence, uniqueness, and analytic dependence on a parameter.

Explicit Construction of Piecewise Affine Mappings with Constraints

Waldemar Pompe (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We construct explicitly piecewise affine mappings u:ℝ ⁿ → ℝ ⁿ with affine boundary data satisfying the constraint div u = 0. As an application of the construction we give short and direct proofs of the main approximation lemmas with constraints in convex integration theory. Our approach provides direct proofs avoiding approximation by smooth mappings and works in all dimensions n ≥ 2. After a slight modification of our construction, the constraint div u = 0 can be turned into det Du...

Self-affine fractals of finite type

Christoph Bandt, Mathias Mesing (2009)

Banach Center Publications

Similarity:

In the class of self-affine sets on ℝⁿ we study a subclass for which the geometry is rather tractable. A type is a standardized position of two intersecting pieces. For a self-affine tiling, this can be identified with an edge or vertex type. We assume that the number of types is finite. We study the topology of such fractals and their boundary sets, and we show how new finite type fractals can be constructed. For finite type self-affine tiles in the plane we give an algorithm which...

An affine framework for analytical mechanics

Paweł Urbański (2003)

Banach Center Publications

Similarity:

An affine Cartan calculus is developed. The concepts of special affine bundles and special affine duality are introduced. The canonical isomorphisms, fundamental for Lagrangian and Hamiltonian formulations of the dynamics in the affine setting are proved.

Affine bijections of C(X,I)

Janko Marovt (2006)

Studia Mathematica

Similarity:

Let 𝒳 be a compact Hausdorff space which satisfies the first axiom of countability, I = [0,1] and 𝓒(𝒳,I) the set of all continuous functions from 𝒳 to I. If φ: 𝓒(𝒳,I) → 𝓒(𝒳,I) is a bijective affine map then there exists a homeomorphism μ: 𝒳 → 𝒳 such that for every component C in 𝒳 we have either φ(f)(x) = f(μ(x)), f ∈ 𝓒(𝒳,I), x ∈ C, or φ(f)(x) = 1-f(μ(x)), f ∈ 𝓒(𝒳,I), x ∈ C.

Control affine systems on solvable three-dimensional Lie groups, I

Rory Biggs, Claudiu C. Remsing (2013)

Archivum Mathematicum

Similarity:

We seek to classify the full-rank left-invariant control affine systems evolving on solvable three-dimensional Lie groups. In this paper we consider only the cases corresponding to the solvable Lie algebras of types II, IV, and V in the Bianchi-Behr classification.