The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Eigenproblem of the generalized Neumann kernel.”

A note on the solvability of homogeneous Riemann boundary problem with infinity index

Juan Bory-Reyes (2021)

Communications in Mathematics

Similarity:

In this note we establish a necessary and sufficient condition for solvability of the homogeneous Riemann boundary problem with infinity index on a rectifiable open curve. The index of the problem we deal with considers the influence of the requirement of the solutions of the problem, the degree of non-smoothness of the curve at the endpoints as well as the behavior of the coefficient at these points.

The principal eigenvalue of the ∞-laplacian with the Neumann boundary condition

Stefania Patrizi (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We prove the existence of a principal eigenvalue associated to the ∞-Laplacian plus lower order terms and the Neumann boundary condition in a bounded smooth domain. As an application we get uniqueness and existence results for the Neumann problem and a decay estimate for viscosity solutions of the Neumann evolution problem.

The principal eigenvalue of the ∞-Laplacian with the Neumann boundary condition

Stefania Patrizi (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We prove the existence of a principal eigenvalue associated to the ∞-Laplacian plus lower order terms and the Neumann boundary condition in a bounded smooth domain. As an application we get uniqueness and existence results for the Neumann problem and a decay estimate for viscosity solutions of the Neumann evolution problem.

Riemann problem on the double of a multiply connected circular region

V. V. Mityushev (1997)

Annales Polonici Mathematici

Similarity:

The Riemann problem has been solved in [9] for an arbitrary closed Riemann surface in terms of the principal functionals. This paper is devoted to solution of the problem only for the double of a multiply connected region and can be treated as complementary to [9,1]. We obtain a complete solution of the Riemann problem in that particular case. The solution is given in analytic form by a Poincaré series.

Riemann mapping theorem in ℂⁿ

Krzysztof Jarosz (2012)

Annales Polonici Mathematici

Similarity:

The classical Riemann Mapping Theorem states that a nontrivial simply connected domain Ω in ℂ is holomorphically homeomorphic to the open unit disc 𝔻. We also know that "similar" one-dimensional Riemann surfaces are "almost" holomorphically equivalent. We discuss the same problem concerning "similar" domains in ℂⁿ in an attempt to find a multidimensional quantitative version of the Riemann Mapping Theorem