### Decay for travelling waves in the Gross–Pitaevskii equation

Philippe Gravejat (2004)

Annales de l'I.H.P. Analyse non linéaire

Similarity:

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Philippe Gravejat (2004)

Annales de l'I.H.P. Analyse non linéaire

Similarity:

Mâagli, Habib, Zribi, Malek (2006)

Abstract and Applied Analysis

Similarity:

Cappiello, M. (2003)

Rendiconti del Seminario Matematico

Similarity:

Patrizia Pucci, Raffaella Servadei (2008)

Annales de l'I.H.P. Analyse non linéaire

Similarity:

Ghanmi, Abdeljabbar, Toumi, Faten (2011)

Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică

Similarity:

Gelisken, Ali, Cinar, Cengiz, Yalcinkaya, Ibrahim (2008)

Discrete Dynamics in Nature and Society

Similarity:

Novotny, Antonin (1997)

Portugaliae Mathematica

Similarity:

Gelisken, Ali, Cinar, Cengiz, Karatas, Ramazan (2008)

Advances in Difference Equations [electronic only]

Similarity:

Jan W. Cholewa, Aníbal Rodríguez-Bernal (2014)

Mathematica Bohemica

Similarity:

We consider the Cahn-Hilliard equation in ${H}^{1}\left({\mathbb{R}}^{N}\right)$ with two types of critically growing nonlinearities: nonlinearities satisfying a certain limit condition as $\left|u\right|\to \infty $ and logistic type nonlinearities. In both situations we prove the ${H}^{2}\left({\mathbb{R}}^{N}\right)$-bound on the solutions and show that the individual solutions are suitably attracted by the set of equilibria. This complements the results in the literature; see J. W. Cholewa, A. Rodriguez-Bernal (2012).