The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Structure of approximate solutions of variational problems with extended-valued convex integrands”

A nonlinear periodic system with nonsmooth potential of indefinite sign

Michael E. Filippakis, Nikolaos S. Papageorgiou (2006)

Archivum Mathematicum

Similarity:

In this paper we consider a nonlinear periodic system driven by the vector ordinary p -Laplacian and having a nonsmooth locally Lipschitz potential, which is positively homogeneous. Using a variational approach which exploits the homogeneity of the potential, we establish the existence of a nonconstant solution.

A relaxation result for autonomous integral functionals with discontinuous non-coercive integrand

Carlo Mariconda, Giulia Treu (2004)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Let L : N × N be a borelian function and consider the following problems inf F ( y ) = a b L ( y ( t ) , y ' ( t ) ) d t : y A C ( [ a , b ] , N ) , y ( a ) = A , y ( b ) = B ( P ) inf F * * ( y ) = a b Ł ( y ( t ) , y ' ( t ) ) d t : y A C ( [ a , b ] , N ) , y ( a ) = A , y ( b ) = B · ( P * * ) We give a sufficient condition, weaker then superlinearity, under which inf F = inf F * * if L is just continuous in x . We then extend a result of Cellina on the Lipschitz regularity of the minima of ( P ) when L is not superlinear.