The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Null-controllability of some systems of parabolic type by one control force”

Global non-negative controllability of the semilinear parabolic equation governed by bilinear control

Alexander Y. Khapalov (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study the global approximate controllability of the one dimensional semilinear convection-diffusion-reaction equation governed in a bounded domain via the coefficient (bilinear control) in the additive reaction term. Clearly, even in the linear case, due to the maximum principle, such system is not globally or locally controllable in any reasonable linear space. It is also well known that for the superlinear terms admitting a power growth at infinity the global approximate controllability...

Null controllability of a nonlinear diffusion system in reactor dynamics

Kumarasamy Sakthivel, Krishnan Balachandran, Jong-Yeoul Park, Ganeshan Devipriya (2010)

Kybernetika

Similarity:

In this paper, we prove the exact null controllability of certain diffusion system by rewriting it as an equivalent nonlinear parabolic integrodifferential equation with variable coefficients in a bounded interval of with a distributed control acting on a subinterval. We first prove a global null controllability result of an associated linearized integrodifferential equation by establishing a suitable observability estimate for adjoint system with appropriate assumptions on the coefficients....

A theorem on the controllability of pertubated linear control systems

Ornella Naselli Ricceri (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

In this Note, applying our recent Theorem 3.1 of [7], we prove that suitable perturbations of a completely controllable linear control system, do not affect the controllability of the system.

A theorem on the controllability of pertubated linear control systems

Ornella Naselli Ricceri (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

In this Note, applying our recent Theorem 3.1 of [7], we prove that suitable perturbations of a completely controllable linear control system, do not affect the controllability of the system.