Infinite time regular synthesis

B. Piccoli

ESAIM: Control, Optimisation and Calculus of Variations (1998)

  • Volume: 3, page 381-405
  • ISSN: 1292-8119

How to cite

top

Piccoli, B.. "Infinite time regular synthesis." ESAIM: Control, Optimisation and Calculus of Variations 3 (1998): 381-405. <http://eudml.org/doc/90531>.

@article{Piccoli1998,
author = {Piccoli, B.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Pontryagin principle; open-loop optimization; nonlinear; Hamiltonian formalism},
language = {eng},
pages = {381-405},
publisher = {EDP Sciences},
title = {Infinite time regular synthesis},
url = {http://eudml.org/doc/90531},
volume = {3},
year = {1998},
}

TY - JOUR
AU - Piccoli, B.
TI - Infinite time regular synthesis
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1998
PB - EDP Sciences
VL - 3
SP - 381
EP - 405
LA - eng
KW - Pontryagin principle; open-loop optimization; nonlinear; Hamiltonian formalism
UR - http://eudml.org/doc/90531
ER -

References

top
  1. [1] M. Bardi, I. Capuzzo Dolcetta: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equation, Birkäuser, Boston, 1998. Zbl0890.49011MR1484411
  2. [2] V.G. Boltianskii: Sufficient conditions for optimality and the justification of the dynamic programming principle, SIAM J. Contr. and Opt., 4, 1966, 326-361. Zbl0143.32004MR197205
  3. [3] A. Bressan, B. Piccoli: Structural stability for time-optimal planar syntheses, Dynamics of Continuous, Discrete and Impulsive Systems 3, 1997, 335-371. Zbl0885.93032MR1461687
  4. [4] A. Bressan, B. Piccoli: A generic classification of time optimal planar stabilizing feedbacks', SIAM J. Contr. and Opt. 36, 1998, 12-32. Zbl0910.93044MR1616525
  5. [5] P. Brunovsky: Every normal linear system has a regular time-optimal synthesis, Math. Slovaca 28, 1978, 81-100. Zbl0369.49013MR527776
  6. [6] P. Brunovsky: Existence of regular syntheses for general problems, J. Diff. Eq., 38, 1980, 317-343. Zbl0417.49030MR605053
  7. [7] L. Cesari: Optimization - Theory and applications, Springer-Verlag, New York, 1983. Zbl0506.49001MR688142
  8. [8] W.H. Fleming, R. W. Rishel: Deterministic and stochastic optimal control, Springer-Verlag, New York, 1975. Zbl0323.49001MR454768
  9. [9] W.H. Fleming, M. Soner: Controlled Markov processes and viscosity solutions, Springer-Verlag, New York, 1993. Zbl0773.60070MR1199811
  10. [10] B. Piccoli: Regular time-optimal syntheses for smooth planar Systems, Rend. Sem. Mat. Univ. Padova 95, 1996, 59-79. Zbl0912.49018MR1405355
  11. [11] B. Piccoli: Classification of generic singularities for the planar time optimal syntheses, SIAM J. Contr. Opt. 34, 1996, 1914-1946. Zbl0865.49022MR1416494
  12. [12] B. Piccoli, H.J. Sussmann: Regular synthesis and sufficiency conditions for optimality, to appear in SIAM J. Contr. Opt.. Zbl0961.93014MR1788064
  13. [13] E.P. Ryan: Singular optimal controls for second-order saturating systems, Int. J. Control 30, No. 4 1979, 549-564. Zbl0422.49006MR554963
  14. [14] H.J. Sussmann: Subanalytic sets and feedback control, J. Diff. Eq. 31, No.l, 1979, 31-52. Zbl0407.93010MR524816
  15. [15] H.J. Sussmann: Lie brackets, real analyticity and geometric control theory, in Differential Geometric Control Theory, R. W. Brockett, R.S. Millman and H.J. Sussmann Eds., Birkhäuser Boston Inc., 1983, 1-115. Zbl0545.93002MR708500
  16. [16] H.J. Sussmann: Regular synthesis for time-optimal control of single-input real-analytic systems in the plane, SIAM J. Contr. Opt. 25, No. 5, 1987, 1145-1162. Zbl0696.93026MR905037
  17. [17] H.J. Sussmann: Recent developments in the regularity theory of optimal trajectories, in Linear and nonlinear mathematical control theory, Rend. Sem. Mat. Univ. e Pol. Torino, Fascicolo speciale, 1987, 149-182. Zbl0649.49003MR948974
  18. [18] H.J. Sussmann: Synthesis, presynthesis, sufficient conditions for optimality and subanaltic sets, in Nonlinear controllability and optimal control, H.J. Sussmann ed., Marcel Dekker, New York, 1990, 1-19. Zbl0712.49015MR1061381

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.