Infinite time regular synthesis
ESAIM: Control, Optimisation and Calculus of Variations (1998)
- Volume: 3, page 381-405
- ISSN: 1292-8119
Access Full Article
topHow to cite
topPiccoli, B.. "Infinite time regular synthesis." ESAIM: Control, Optimisation and Calculus of Variations 3 (1998): 381-405. <http://eudml.org/doc/90531>.
@article{Piccoli1998,
author = {Piccoli, B.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Pontryagin principle; open-loop optimization; nonlinear; Hamiltonian formalism},
language = {eng},
pages = {381-405},
publisher = {EDP Sciences},
title = {Infinite time regular synthesis},
url = {http://eudml.org/doc/90531},
volume = {3},
year = {1998},
}
TY - JOUR
AU - Piccoli, B.
TI - Infinite time regular synthesis
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 1998
PB - EDP Sciences
VL - 3
SP - 381
EP - 405
LA - eng
KW - Pontryagin principle; open-loop optimization; nonlinear; Hamiltonian formalism
UR - http://eudml.org/doc/90531
ER -
References
top- [1] M. Bardi, I. Capuzzo Dolcetta: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equation, Birkäuser, Boston, 1998. Zbl0890.49011MR1484411
- [2] V.G. Boltianskii: Sufficient conditions for optimality and the justification of the dynamic programming principle, SIAM J. Contr. and Opt., 4, 1966, 326-361. Zbl0143.32004MR197205
- [3] A. Bressan, B. Piccoli: Structural stability for time-optimal planar syntheses, Dynamics of Continuous, Discrete and Impulsive Systems 3, 1997, 335-371. Zbl0885.93032MR1461687
- [4] A. Bressan, B. Piccoli: A generic classification of time optimal planar stabilizing feedbacks', SIAM J. Contr. and Opt. 36, 1998, 12-32. Zbl0910.93044MR1616525
- [5] P. Brunovsky: Every normal linear system has a regular time-optimal synthesis, Math. Slovaca 28, 1978, 81-100. Zbl0369.49013MR527776
- [6] P. Brunovsky: Existence of regular syntheses for general problems, J. Diff. Eq., 38, 1980, 317-343. Zbl0417.49030MR605053
- [7] L. Cesari: Optimization - Theory and applications, Springer-Verlag, New York, 1983. Zbl0506.49001MR688142
- [8] W.H. Fleming, R. W. Rishel: Deterministic and stochastic optimal control, Springer-Verlag, New York, 1975. Zbl0323.49001MR454768
- [9] W.H. Fleming, M. Soner: Controlled Markov processes and viscosity solutions, Springer-Verlag, New York, 1993. Zbl0773.60070MR1199811
- [10] B. Piccoli: Regular time-optimal syntheses for smooth planar Systems, Rend. Sem. Mat. Univ. Padova 95, 1996, 59-79. Zbl0912.49018MR1405355
- [11] B. Piccoli: Classification of generic singularities for the planar time optimal syntheses, SIAM J. Contr. Opt. 34, 1996, 1914-1946. Zbl0865.49022MR1416494
- [12] B. Piccoli, H.J. Sussmann: Regular synthesis and sufficiency conditions for optimality, to appear in SIAM J. Contr. Opt.. Zbl0961.93014MR1788064
- [13] E.P. Ryan: Singular optimal controls for second-order saturating systems, Int. J. Control 30, No. 4 1979, 549-564. Zbl0422.49006MR554963
- [14] H.J. Sussmann: Subanalytic sets and feedback control, J. Diff. Eq. 31, No.l, 1979, 31-52. Zbl0407.93010MR524816
- [15] H.J. Sussmann: Lie brackets, real analyticity and geometric control theory, in Differential Geometric Control Theory, R. W. Brockett, R.S. Millman and H.J. Sussmann Eds., Birkhäuser Boston Inc., 1983, 1-115. Zbl0545.93002MR708500
- [16] H.J. Sussmann: Regular synthesis for time-optimal control of single-input real-analytic systems in the plane, SIAM J. Contr. Opt. 25, No. 5, 1987, 1145-1162. Zbl0696.93026MR905037
- [17] H.J. Sussmann: Recent developments in the regularity theory of optimal trajectories, in Linear and nonlinear mathematical control theory, Rend. Sem. Mat. Univ. e Pol. Torino, Fascicolo speciale, 1987, 149-182. Zbl0649.49003MR948974
- [18] H.J. Sussmann: Synthesis, presynthesis, sufficient conditions for optimality and subanaltic sets, in Nonlinear controllability and optimal control, H.J. Sussmann ed., Marcel Dekker, New York, 1990, 1-19. Zbl0712.49015MR1061381
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.