Displaying similar documents to “Local null controllability of a two-dimensional fluid-structure interaction problem”

Local null controllability of a fluid-solid interaction problem in dimension 3

Muriel Boulakia, Sergio Guerrero (2013)

Journal of the European Mathematical Society

Similarity:

We are interested by the three-dimensional coupling between an incompressible fluid and a rigid body. The fluid is modeled by the Navier-Stokes equations, while the solid satisfies the Newton's laws. In the main result of the paper we prove that, with the help of a distributed control, we can drive the fluid and structure velocities to zero and the solid to a reference position provided that the initial velocities are small enough and the initial position of the structure is close to...

Single input controllability of a simplified fluid-structure interaction model

Yuning Liu, Takéo Takahashi, Marius Tucsnak (2013)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper we study a controllability problem for a simplified one dimensional model for the motion of a rigid body in a viscous fluid. The control variable is the velocity of the fluid at one end. One of the novelties brought in with respect to the existing literature consists in the fact that we use a single scalar control. Moreover, we introduce a new methodology, which can be used for other nonlinear parabolic systems, independently of the techniques previously used for the linearized...

Exact controllability of an elastic membrane coupled with a potential fluid

Scott Hansen (2001)

International Journal of Applied Mathematics and Computer Science

Similarity:

We consider the problem of boundary control of an elastic system with coupling to a potential equation. The potential equation represents the linearized motions of an incompressible inviscid fluid in a cavity bounded in part by an elastic membrane. Sufficient control is placed on a portion of the elastic membrane to insure that the uncoupled membrane is exactly controllable. The main result is that if the density of the fluid is sufficiently small, then the coupled system is exactly...