Displaying similar documents to “Exterior problem of the Darwin model and its numerical computation”

Coupling Darcy and Stokes equations for porous media with cracks

Christine Bernardi, Frédéric Hecht, Olivier Pironneau (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In order to handle the flow of a viscous incompressible fluid in a porous medium with cracks, the thickness of which cannot be neglected, we consider a model which couples the Darcy equations in the medium with the Stokes equations in the cracks by a new boundary condition at the interface, namely the continuity of the pressure. We prove that this model admits a unique solution and propose a mixed formulation of it. Relying on this formulation, we describe a finite element discretization...

Regularization of an unilateral obstacle problem

Ahmed Addou, E. Bekkaye Mermri, Jamal Zahi (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The aim of this article is to give a regularization method for an unilateral obstacle problem with obstacle ψ and second member f , which generalizes the one established by the authors of [4] in case of null obstacle and a second member is equal to constant 1 .

Stabilization methods in relaxed micromagnetism

Stefan A. Funken, Andreas Prohl (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The magnetization of a ferromagnetic sample solves a non-convex variational problem, where its relaxation by convexifying the energy density resolves relevant macroscopic information. The numerical analysis of the relaxed model has to deal with a constrained convex but degenerated, nonlocal energy functional in mixed formulation for magnetic potential u and magnetization 𝐦 . In [C. Carstensen and A. Prohl, Numer. Math. 90 (2001) 65–99], the conforming P 1 - ( P 0 ) d -element in d = 2 , 3 spatial dimensions...

Analysis of a coupled BEM/FEM eigensolver for the hydroelastic vibrations problem

Mauricio A. Barrientos, Gabriel N. Gatica, Rodolfo Rodríguez, Marcela E. Torrejón (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

A coupled finite/boundary element method to approximate the free vibration modes of an elastic structure containing an incompressible fluid is analyzed in this paper. The effect of the fluid is taken into account by means of one of the most usual procedures in engineering practice: an added mass formulation, which is posed in terms of boundary integral equations. Piecewise linear continuous elements are used to discretize the solid displacements and the fluid-solid interface variables....

A finite element discretization of the three-dimensional Navier–Stokes equations with mixed boundary conditions

Christine Bernardi, Frédéric Hecht, Rüdiger Verfürth (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We consider a variational formulation of the three-dimensional Navier–Stokes equations with mixed boundary conditions and prove that the variational problem admits a solution provided that the domain satisfies a suitable regularity assumption. Next, we propose a finite element discretization relying on the Galerkin method and establish and error estimates.

On the worst scenario method: a modified convergence theorem and its application to an uncertain differential equation

Petr Harasim (2008)

Applications of Mathematics

Similarity:

We propose a theoretical framework for solving a class of worst scenario problems. The existence of the worst scenario is proved through the convergence of a sequence of approximate worst scenarios. The main convergence theorem modifies and corrects the relevant results already published in literature. The theoretical framework is applied to a particular problem with an uncertain boundary value problem for a nonlinear ordinary differential equation with an uncertain coefficient. ...

An analysis technique for stabilized finite element solution of incompressible flows

Tomás Chacón Rebollo (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

This paper presents an extension to stabilized methods of the standard technique for the numerical analysis of mixed methods. We prove that the stability of stabilized methods follows from an underlying discrete inf-sup condition, plus a uniform separation property between bubble and velocity finite element spaces. We apply the technique introduced to prove the stability of stabilized spectral element methods so as stabilized solution of the primitive equations of the ocean. ...