Displaying similar documents to “The Child–Langmuir limit for semiconductors : a numerical validation”

A Metropolis adjusted Nosé-Hoover thermostat

Benedict Leimkuhler, Sebastian Reich (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We present a Monte Carlo technique for sampling from the canonical distribution in molecular dynamics. The method is built upon the Nosé-Hoover constant temperature formulation and the generalized hybrid Monte Carlo method. In contrast to standard hybrid Monte Carlo methods only the thermostat degree of freedom is stochastically resampled during a Monte Carlo step.

The Child–Langmuir limit for semiconductors: a numerical validation

María-José Cáceres, José-Antonio Carrillo, Pierre Degond (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The Boltzmann–Poisson system modeling the electron flow in semiconductors is used to discuss the validity of the Child–Langmuir asymptotics. The scattering kernel is approximated by a simple relaxation time operator. The Child–Langmuir limit gives an approximation of the current-voltage characteristic curves by means of a scaling procedure in which the ballistic velocity is much larger that the thermal one. We discuss the validity of the Child–Langmuir regime by performing detailed...

Comparison of Vlasov solvers for spacecraft charging simulation

Nicolas Vauchelet, Jean-Paul Dudon, Christophe Besse, Thierry Goudon (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The modelling and the numerical resolution of the electrical charging of a spacecraft in interaction with the Earth magnetosphere is considered. It involves the Vlasov-Poisson system, endowed with non standard boundary conditions. We discuss the pros and cons of several numerical methods for solving this system, using as benchmark a simple 1D model which exhibits the main difficulties of the original models.

Numerical approximation of self-consistent Vlasov models for low-frequency electromagnetic phenomena

Nicolas Besse, Norbert J. mauser, Eric Sonnendrücker (2007)

International Journal of Applied Mathematics and Computer Science

Similarity:

We present a new numerical method to solve the Vlasov-Darwin and Vlasov-Poisswell systems which are approximations of the Vlasov-Maxwell equation in the asymptotic limit of the infinite speed of light. These systems model low-frequency electromagnetic phenomena in plasmas, and thus "light waves" are somewhat supressed, which in turn allows thenumerical discretization to dispense with the Courant-Friedrichs-Lewy condition on the time step. We construct a numerical scheme based on semi-Lagrangian...