Displaying similar documents to “An optimal matching problem”

The Monge problem for strictly convex norms in d

Thierry Champion, Luigi De Pascale (2010)

Journal of the European Mathematical Society

Similarity:

We prove the existence of an optimal transport map for the Monge problem in a convex bounded subset of d under the assumptions that the first marginal is absolutely continuous with respect to the Lebesgue measure and that the cost is given by a strictly convex norm. We propose a new approach which does not use disintegration of measures.

Generalized characterization of the convex envelope of a function

Fethi Kadhi (2002)

RAIRO - Operations Research - Recherche Opérationnelle

Similarity:

We investigate the minima of functionals of the form [ a , b ] g ( u ˙ ( s ) ) d s where g is strictly convex. The admissible functions u : [ a , b ] are not necessarily convex and satisfy u f on [ a , b ] , u ( a ) = f ( a ) , u ( b ) = f ( b ) , f is a fixed function on [ a , b ] . We show that the minimum is attained by f ¯ , the convex envelope of f .

Estimates for k -Hessian operator and some applications

Dongrui Wan (2013)

Czechoslovak Mathematical Journal

Similarity:

The k -convex functions are the viscosity subsolutions to the fully nonlinear elliptic equations F k [ u ] = 0 , where F k [ u ] is the elementary symmetric function of order k , 1 k n , of the eigenvalues of the Hessian matrix D 2 u . For example, F 1 [ u ] is the Laplacian Δ u and F n [ u ] is the real Monge-Ampère operator det D 2 u , while 1 -convex functions and n -convex functions are subharmonic and convex in the classical sense, respectively. In this paper, we establish an approximation theorem for negative k -convex functions, and give...

Convex integration with constraints and applications to phase transitions and partial differential equations

Stefan Müller, Vladimír Šverák (1999)

Journal of the European Mathematical Society

Similarity:

We study solutions of first order partial differential relations D u K , where u : Ω n m is a Lipschitz map and K is a bounded set in m × n matrices, and extend Gromov’s theory of convex integration in two ways. First, we allow for additional constraints on the minors of D u and second we replace Gromov’s P −convex hull by the (functional) rank-one convex hull. The latter can be much larger than the former and this has important consequences for the existence of ‘wild’ solutions to elliptic systems. Our...

Minimal multi-convex projections

Grzegorz Lewicki, Michael Prophet (2007)

Studia Mathematica

Similarity:

We say that a function from X = C L [ 0 , 1 ] is k-convex (for k ≤ L) if its kth derivative is nonnegative. Let P denote a projection from X onto V = Πₙ ⊂ X, where Πₙ denotes the space of algebraic polynomials of degree less than or equal to n. If we want P to leave invariant the cone of k-convex functions (k ≤ n), we find that such a demand is impossible to fulfill for nearly every k. Indeed, only for k = n-1 and k = n does such a projection exist. So let us consider instead a more general “shape”...

The Young inequality and the Δ₂-condition

Philippe Laurençot (2002)

Colloquium Mathematicae

Similarity:

If φ: [0,∞) → [0,∞) is a convex function with φ(0) = 0 and conjugate function φ*, the inequality x y ε φ ( x ) + C ε φ * ( y ) is shown to hold true for every ε ∈ (0,∞) if and only if φ* satisfies the Δ₂-condition.

An observability estimate for parabolic equations from a measurable set in time and its applications

Kim Dang Phung, Gengsheng Wang (2013)

Journal of the European Mathematical Society

Similarity:

This paper presents a new observability estimate for parabolic equations in Ω × ( 0 , T ) , where Ω is a convex domain. The observation region is restricted over a product set of an open nonempty subset of Ω and a subset of positive measure in ( 0 , T ) . This estimate is derived with the aid of a quantitative unique continuation at one point in time. Applications to the bang-bang property for norm and time optimal control problems are provided.

Smoothing a polyhedral convex function via cumulant transformation and homogenization

Alberto Seeger (1997)

Annales Polonici Mathematici

Similarity:

Given a polyhedral convex function g: ℝⁿ → ℝ ∪ +∞, it is always possible to construct a family g t > 0 which converges pointwise to g and such that each gₜ: ℝⁿ → ℝ is convex and infinitely often differentiable. The construction of such a family g t > 0 involves the concept of cumulant transformation and a standard homogenization procedure.

Measure and Helly's Intersection Theorem for Convex Sets

N. Stavrakas (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let = F α be a uniformly bounded collection of compact convex sets in ℝ ⁿ. Katchalski extended Helly’s theorem by proving for finite ℱ that dim (⋂ ℱ) ≥ d, 0 ≤ d ≤ n, if and only if the intersection of any f(n,d) elements has dimension at least d where f(n,0) = n+1 = f(n,n) and f(n,d) = maxn+1,2n-2d+2 for 1 ≤ d ≤ n-1. An equivalent statement of Katchalski’s result for finite ℱ is that there exists δ > 0 such that the intersection of any f(n,d) elements of ℱ contains a d-dimensional ball...

Differentiation of n-convex functions

H. Fejzić, R. E. Svetic, C. E. Weil (2010)

Fundamenta Mathematicae

Similarity:

The main result of this paper is that if f is n-convex on a measurable subset E of ℝ, then f is n-2 times differentiable, n-2 times Peano differentiable and the corresponding derivatives are equal, and f ( n - 1 ) = f ( n - 1 ) except on a countable set. Moreover f ( n - 1 ) is approximately differentiable with approximate derivative equal to the nth approximate Peano derivative of f almost everywhere.

Poincaré Inequalities and Moment Maps

Bo’az Klartag (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We discuss a method for obtaining Poincaré-type inequalities on arbitrary convex bodies in n . Our technique involves a dual version of Bochner’s formula and a certain moment map, and it also applies to some non-convex sets. In particular, we generalize the central limit theorem for convex bodies to a class of non-convex domains, including the unit balls of p -spaces in n for 0 < p < 1 .

Distances to convex sets

Antonio S. Granero, Marcos Sánchez (2007)

Studia Mathematica

Similarity:

If X is a Banach space and C a convex subset of X*, we investigate whether the distance d ̂ ( c o ¯ w * ( K ) , C ) : = s u p i n f | | k - c | | : c C : k c o ¯ w * ( K ) from c o ¯ w * ( K ) to C is M-controlled by the distance d̂(K,C) (that is, if d ̂ ( c o ¯ w * ( K ) , C ) M d ̂ ( K , C ) for some 1 ≤ M < ∞), when K is any weak*-compact subset of X*. We prove, for example, that: (i) C has 3-control if C contains no copy of the basis of ℓ₁(c); (ii) C has 1-control when C ⊂ Y ⊂ X* and Y is a subspace with weak*-angelic closed dual unit ball B(Y*); (iii) if C is a convex subset of X and X is considered canonically...