Displaying similar documents to “The Laplacian spread of graphs”

Some properties of the distance Laplacian eigenvalues of a graph

Mustapha Aouchiche, Pierre Hansen (2014)

Czechoslovak Mathematical Journal

Similarity:

The distance Laplacian of a connected graph G is defined by = Diag ( Tr ) - 𝒟 , where 𝒟 is the distance matrix of G , and Diag ( Tr ) is the diagonal matrix whose main entries are the vertex transmissions in G . The spectrum of is called the distance Laplacian spectrum of G . In the present paper, we investigate some particular distance Laplacian eigenvalues. Among other results, we show that the complete graph is the unique graph with only two distinct distance Laplacian eigenvalues. We establish some properties...

On the sum of powers of Laplacian eigenvalues of bipartite graphs

Bo Zhou, Aleksandar Ilić (2010)

Czechoslovak Mathematical Journal

Similarity:

For a bipartite graph G and a non-zero real α , we give bounds for the sum of the α th powers of the Laplacian eigenvalues of G using the sum of the squares of degrees, from which lower and upper bounds for the incidence energy, and lower bounds for the Kirchhoff index and the Laplacian Estrada index are deduced.

Remark on inequalities for the Laplacian spread of graphs

Igor Milovanović, Emina Milovanović (2014)

Czechoslovak Mathematical Journal

Similarity:

Two inequalities for the Laplacian spread of graphs are proved in this note. These inequalities are reverse to those obtained by Z. You, B. Liu: The Laplacian spread of graphs, Czech. Math. J. 62 (2012), 155–168.