Displaying similar documents to “Singular points of order k of Clarke regular and arbitrary functions”

Biseparating maps on generalized Lipschitz spaces

Denny H. Leung (2010)

Studia Mathematica

Similarity:

Let X, Y be complete metric spaces and E, F be Banach spaces. A bijective linear operator from a space of E-valued functions on X to a space of F-valued functions on Y is said to be biseparating if f and g are disjoint if and only if Tf and Tg are disjoint. We introduce the class of generalized Lipschitz spaces, which includes as special cases the classes of Lipschitz, little Lipschitz and uniformly continuous functions. Linear biseparating maps between generalized Lipschitz spaces are...

On differentiability properties of Lipschitz functions on a Banach space with a Lipschitz uniformly Gâteaux differentiable bump function

Luděk Zajíček (1997)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We improve a theorem of P.G. Georgiev and N.P. Zlateva on Gâteaux differentiability of Lipschitz functions in a Banach space which admits a Lipschitz uniformly Gâteaux differentiable bump function. In particular, our result implies the following theorem: If d is a distance function determined by a closed subset A of a Banach space X with a uniformly Gâteaux differentiable norm, then the set of points of X A at which d is not Gâteaux differentiable is not only a first category set, but...

A new proof of Fréchet differentiability of Lipschitz functions

Joram Lindenstrauss, David Preiss (2000)

Journal of the European Mathematical Society

Similarity:

We give a relatively simple (self-contained) proof that every real-valued Lipschitz function on 2 (or more generally on an Asplund space) has points of Fréchet differentiability. Somewhat more generally, we show that a real-valued Lipschitz function on a separable Banach space has points of Fréchet differentiability provided that the w * closure of the set of its points of Gâteaux differentiability is norm separable.

Two applications of smoothness in C(K) spaces

Matías Raja (2014)

Studia Mathematica

Similarity:

A simple observation about embeddings of smooth Banach spaces into C(K) spaces allows us to construct a parametrization of the separable Banach spaces using closed subsets of the interval [0,1]. The same idea is applied to the study of the isometric embedding of p spaces into certain C(K) spaces with the additional condition that the functions of the image must be Lipschitz with respect to a fixed finer metric on K. The feasibility of that kind of embeddings is related to Szlenk indices. ...

A Lipschitz function which is C on a.e. line need not be generically differentiable

Luděk Zajíček (2013)

Colloquium Mathematicae

Similarity:

We construct a Lipschitz function f on X = ℝ ² such that, for each 0 ≠ v ∈ X, the function f is C smooth on a.e. line parallel to v and f is Gâteaux non-differentiable at all points of X except a first category set. Consequently, the same holds if X (with dimX > 1) is an arbitrary Banach space and “a.e.” has any usual “measure sense”. This example gives an answer to a natural question concerning the author’s recent study of linearly essentially smooth functions (which generalize essentially...

On continuous composition operators

Wilhelmina Smajdor (2010)

Annales Polonici Mathematici

Similarity:

Let I ⊂ ℝ be an interval, Y be a normed linear space and Z be a Banach space. We investigate the Banach space Lip₂(I,Z) of all functions ψ: I → Z such that M ψ : = s u p | | [ r , s , t ; ψ ] | | : r < s < t , r , s , t I < , where [r,s,t;ψ]:= ((s-r)ψ(t)+(t-s)ψ(r)-(t-r)ψ(s))/((t-r)(t-s)(s-r)). We show that ψ ∈ Lip₂(I,Z) if and only if ψ is differentiable and its derivative ψ’ is Lipschitzian. Suppose the composition operator N generated by h: I × Y → Z, (Nφ)(t):= h(t,φ(t)), maps the set (I,Y) of all affine functions φ: I → Y into Lip₂(I,Z). We prove...