The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Mesocompactness and selection theory”

Compact images of spaces with a weaker metric topology

Peng-fei Yan, Cheng Lü (2008)

Czechoslovak Mathematical Journal

Similarity:

If X is a space that can be mapped onto a metric space by a one-to-one mapping, then X is said to have a weaker metric topology. In this paper, we give characterizations of sequence-covering compact images and sequentially-quotient compact images of spaces with a weaker metric topology. The main results are that (1) Y is a sequence-covering compact image of a space with a weaker metric topology if and only if Y has a sequence { i } i of point-finite c s -covers such that i st ( y , i ) = { y } for each y Y . (2) Y is...

Weak-bases and D -spaces

Dennis K. Burke (2007)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is shown that certain weak-base structures on a topological space give a D -space. This solves the question by A.V. Arhangel’skii of when quotient images of metric spaces are D -spaces. A related result about symmetrizable spaces also answers a question of Arhangel’skii. Hence, quotient mappings, with compact fibers, from metric spaces have a D -space image. What about quotient s -mappings? Arhangel’skii and Buzyakova have shown that spaces with a point-countable base...

Sequential completeness of subspaces of products of two cardinals

Roman Frič, Nobuyuki Kemoto (1999)

Czechoslovak Mathematical Journal

Similarity:

Let κ be a cardinal number with the usual order topology. We prove that all subspaces of κ 2 are weakly sequentially complete and, as a corollary, all subspaces of ω 1 2 are sequentially complete. Moreover we show that a subspace of ( ω 1 + 1 ) 2 need not be sequentially complete, but note that X = A × B is sequentially complete whenever A and B are subspaces of κ .