Displaying similar documents to “Upper and Lower Solutions Method for Darboux Problem for Fractional Order Implicit Impulsive Partial Hyperbolic Differential Equations”

The method of upper and lower solutions for partial hyperbolic fractional order differential inclusions with impulses

Saïd Abbas, Mouffak Benchohra (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper we use the upper and lower solutions method to investigate the existence of solutions of a class of impulsive partial hyperbolic differential inclusions at fixed moments of impulse involving the Caputo fractional derivative. These results are obtained upon suitable fixed point theorems.

Fractional order impulsive partial hyperbolic differential inclusions with variable times

Saïd Abbas, Mouffak Benchohra, Lech Górniewicz (2011)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

This paper deals with the existence of solutions to some classes of partial impulsive hyperbolic differential inclusions with variable times involving the Caputo fractional derivative. Our works will be considered by using the nonlinear alternative of Leray-Schauder type.

The general solution of impulsive systems with Riemann-Liouville fractional derivatives

Xianmin Zhang, Wenbin Ding, Hui Peng, Zuohua Liu, Tong Shu (2016)

Open Mathematics

Similarity:

In this paper, we study a kind of fractional differential system with impulsive effect and find the formula of general solution for the impulsive fractional-order system by analysis of the limit case (as impulse tends to zero). The obtained result shows that the deviation caused by impulses for fractional-order system is undetermined. An example is also provided to illustrate the result.

Impulsive Fractional Differential Inclusions Involving the Caputo Fractional Derivative

Ait Dads, E., Benchohra, M., Hamani, S. (2009)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 26A33, 34A37. In this paper, we establish sufficient conditions for the existence of solutions for a class of initial value problem for impulsive fractional differential inclusions involving the Caputo fractional derivative. Both cases of convex and nonconvex valued right-hand side are considered. The topological structure of the set of solutions is also considered.

Anti-Periodic Boundary Value Problem for Impulsive Fractional Integro Differential Equations

Anguraj, A., Karthikeyan, P. (2010)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 34A37, 34B15, 26A33, 34C25, 34K37 In this paper we prove the existence of solutions for fractional impulsive differential equations with antiperiodic boundary condition in Banach spaces. The results are obtained by using fractional calculus' techniques and the fixed point theorems.

Upper and lower solutions method for partial Hadamard fractional integral equations and inclusions

Saïd Abbas, Eman Alaidarous, Wafaa Albarakati, Mouffak Benchohra (2015)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper we use the upper and lower solutions method combined with Schauder's fixed point theorem and a fixed point theorem for condensing multivalued maps due to Martelli to investigate the existence of solutions for some classes of partial Hadamard fractional integral equations and inclusions.

A global uniqueness result for fractional order implicit differential equations

Said Abbas, Mouffak Benchohra (2012)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we investigate the global existence and uniqueness of solutions for the initial value problems (IVP for short), for a class of implicit hyperbolic fractional order differential equations by using a nonlinear alternative of Leray-Schauder type for contraction maps on Fréchet spaces.