The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The regular topology on C ( X )

Weak orderability of some spaces which admit a weak selection

Camillo Costantini (2006)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that if a Hausdorff topological space X satisfies one of the following properties: a) X has a countable, discrete dense subset and X 2 is hereditarily collectionwise Hausdorff; b) X has a discrete dense subset and admits a countable base; then the existence of a (continuous) weak selection on X implies weak orderability. As a special case of either item a) or b), we obtain the result for every separable metrizable space with a discrete dense subset.

Selections on Ψ -spaces

Michael Hrušák, Paul J. Szeptycki, Artur Hideyuki Tomita (2001)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that if 𝒜 is an uncountable AD (almost disjoint) family of subsets of ω then the space Ψ ( 𝒜 ) does not admit a continuous selection; moreover, if 𝒜 is maximal then Ψ ( 𝒜 ) does not even admit a continuous selection on pairs, answering thus questions of T. Nogura.

Lonely points revisited

Jonathan L. Verner (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In our previous paper, we introduced the notion of a lonely point, due to P. Simon. A point p X is lonely if it is a limit point of a countable dense-in-itself set, it is not a limit point of a countable discrete set and all countable sets whose limit point it is form a filter. We use the space 𝒢 ω from a paper of A. Dow, A.V. Gubbi and A. Szymański [Rigid Stone spaces within ZFC, Proc. Amer. Math. Soc. 102 (1988), no. 3, 745–748] to construct lonely points in ω * . This answers the question...