The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Equation f ( p ( x ) ) = q ( f ( x ) ) for given real functions p , q

A note on normal varieties of monounary algebras

Ivan Chajda, Helmut Länger (2002)

Czechoslovak Mathematical Journal

Similarity:

A variety is called normal if no laws of the form s = t are valid in it where s is a variable and t is not a variable. Let L denote the lattice of all varieties of monounary algebras ( A , f ) and let V be a non-trivial non-normal element of L . Then V is of the form M o d ( f n ( x ) = x ) with some n > 0 . It is shown that the smallest normal variety containing V is contained in H S C ( M o d ( f m n ( x ) = x ) ) for every m > 1 where C denotes the operator of forming choice algebras. Moreover, it is proved that the sublattice of L consisting of all normal...

Some monounary algebras with EKP

Emília Halušková (2020)

Mathematica Bohemica

Similarity:

An algebra 𝒜 is said to have the endomorphism kernel property (EKP) if every congruence on 𝒜 is the kernel of some endomorphism of 𝒜 . Three classes of monounary algebras are dealt with. For these classes, all monounary algebras with EKP are described.

Some remarks on Q -algebras

Nicolas Th. Varopoulos (1972)

Annales de l'institut Fourier

Similarity:

We study Banach algebras that are quotients of uniform algebras and we show in particular that the class is stable by interpolation. We also show that p , ( 1 p ) are Q algebras and that A n = L 1 ( Z ; 1 + | n | α ) is a Q -algebra if and only if α > 1 / 2 .

A note on splittable spaces

Vladimir Vladimirovich Tkachuk (1992)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space X is splittable over a space Y (or splits over Y ) if for every A X there exists a continuous map f : X Y with f - 1 f A = A . We prove that any n -dimensional polyhedron splits over 𝐑 2 n but not necessarily over 𝐑 2 n - 2 . It is established that if a metrizable compact X splits over 𝐑 n , then dim X n . An example of n -dimensional compact space which does not split over 𝐑 2 n is given.