Displaying similar documents to “Mean quadratic convergence of signed random measures”

Optimal transportation for multifractal random measures and applications

Rémi Rhodes, Vincent Vargas (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

In this paper, we study optimal transportation problems for multifractal random measures. Since these measures are much less regular than optimal transportation theory requires, we introduce a new notion of transportation which is intuitively some kind of multistep transportation. Applications are given for construction of multifractal random changes of times and to the existence of random metrics, the volume forms of which coincide with the multifractal random measures.

Strong Unique Ergodicity of Random Dynamical Systems on Polish Spaces

Paweł Płonka (2016)

Annales Mathematicae Silesianae

Similarity:

In this paper we want to show the existence of a form of asymptotic stability of random dynamical systems in the sense of L. Arnold using arguments analogous to those presented by T. Szarek in [6], that is showing it using conditions generalizing the notion of tightness of measures. In order to do that we use tightness theory for random measures as developed by H. Crauel in [2].

Bilinear random integrals

Jan Rosiński

Similarity:

CONTENTSI. Introduction.....................................................................................................................................................................5II. Preliminaries...................................................................................................................................................................7  1. Infinitely divisible probability measures on Banach spaces..........................................................................................7  2....

Asymptotics of counts of small components in random structures and models of coagulation-fragmentation

Boris L. Granovsky (2013)

ESAIM: Probability and Statistics

Similarity:

We establish necessary and sufficient conditions for the convergence (in the sense of finite dimensional distributions) of multiplicative measures on the set of partitions. The multiplicative measures depict distributions of component spectra of random structures and also the equilibria of classic models of statistical mechanics and stochastic processes of coagulation-fragmentation. We show that the convergence of multiplicative measures is equivalent to the asymptotic independence of...