Asymptotics of counts of small components in random structures and models of coagulation-fragmentation
ESAIM: Probability and Statistics (2013)
- Volume: 17, page 531-549
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] G. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications. Addison-Wesley 2 (1976). Zbl0655.10001MR557013
- [2] R. Arratia and S. Tavaré, Independent process approximations for random combinatorial structures. Adv. Math.104 (1994) 90–154. Zbl0802.60008MR1272071
- [3] R. Arratia, A. Barbour and S. Tavaré, Logarithmic combinatorial structures: a probabilistic approach. European Mathematical Society Publishing House, Zurich (2004). Zbl1040.60001MR2032426
- [4] A. Barbour and B. Granovsky, Random combinatorial structures: the convergent case. J. Comb. Theory, Ser. A 109 (2005) 203–220. Zbl1065.60143MR2121024
- [5] J. Bell, Sufficient conditions for zero-one laws. Trans. Amer. Math. Soc.354 (2002) 613–630. Zbl0981.60030MR1862560
- [6] J. Bell and S. Burris, Asymptotics for logical limit laws: when the growth of the components is in RT class. Trans. Amer. Soc.355 (2003) 3777–3794. Zbl1021.03022MR1990173
- [7] N. Berestycki and J. Pitman, Gibbs distributions for random partitions generated by a fragmentation process. J. Stat. Phys.127 (2006) 381–418. Zbl1126.82013MR2314353
- [8] J. Bertoin, Random fragmentation and coagulation processes, Cambridge Studies in Advanced Mathematics. Cambridge University Press (2006). Zbl1107.60002MR2253162
- [9] B. Bollobás, Random graphs, Cambridge Studies in Advanced Mathematics. Cambridge University Press (2001). Zbl0979.05003MR1864966
- [10] S. Burris, Number theoretic density and logical limit laws, Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI 86 (2001). Zbl0995.11001MR1800435
- [11] S. Burris and K. Yeats, Sufficient conditions for labelled 0 − 1 laws. Discrete Math. Theory Comput. Sci. 10 (2008) 147–156. Zbl1139.03023MR2398632
- [12] P. Cattiaux and N. Gozlan, Deviations bounds and conditional principles for thin sets. Stoch. Proc. Appl.117 (2007) 221–250. Zbl1119.60020MR2290194
- [13] A. Dembo and O. Zeitouni, Refinements of the Gibbs conditioning principle. Probab. Theory Relat. Fields104 (1996) 1–14. Zbl0838.60025MR1367663
- [14] R. Durrett, B. Granovsky and S. Gueron, The equilibrium behaviour of reversible coagulation-fragmentation processes. J. Theoret. Probab.12 (1999) 447–474. Zbl0930.60094MR1684753
- [15] P. Diaconis and D. Freedman, Conditional limit theorems for exponential families and finite versions of de Finetti’s theorem. J. Theoret. Probab.1 (1988) 381–410. Zbl0655.60029MR958245
- [16] M. Erlihson and B. Granovsky, Reversible coagulation-fragmentation processes and random combinatorial structures: asymptotics for the number of groups. Random Struct. Algorithms25 (2004) 227–245. Zbl1060.60020MR2076340
- [17] M. Erlihson and B. Granovsky, Limit shapes of multiplicative measures associated with coagulation-fragmentation processes and random combinatorial structures. Ann. Inst. Henri Poincaré Prob. Stat.44 (2005) 915–945. Zbl1181.60146MR2453776
- [18] G. Freiman and B. Granovsky, Asymptotic formula for a partition function of reversible coagulation-fragmentation processes. J. Israel Math.130 (2002) 259–279. Zbl1003.60009MR1919380
- [19] G. Freiman and B. Granovsky, Clustering in coagulation-fragmentation processes, random combinatorial structures and additive number systems: asymptotic formulae and limiting laws. Trans. Amer. Math. Soc.357 (2005) 2483–2507. Zbl1062.60097MR2140447
- [20] B. Fristedt, The structure of random partitions of large integers. Trans. Amer. Math. Soc.337 (1993) 703–735. Zbl0795.05009MR1094553
- [21] B. Granovsky and A. Kryvoshaev, Coagulation processes with Gibbsian time evolution. arXiv:1008.1027 (2010). Zbl1252.82070MR3012087
- [22] B. Granovsky and D. Stark, Asymptotic enumeration and logical limit laws for expansive multisets. J. London Math. Soc.73 (2005) 252–272. Zbl1086.60006MR2197382
- [23] W. Greiner, L. Neise and H. Stӧcker, Thermodinamics and Statistical Mechanics, Classical Theoretical Physics. Springer-Verlag (2000). Zbl0823.73001
- [24] E. Grosswald, Representatin of integers as sums of squares. Springer-Verlag (1985). Zbl0574.10045MR803155
- [25] F. Kelly, Reversibility and stochastic networks. Wiley (1979). Zbl0422.60001MR554920
- [26] V. Kolchin, Random graphs, Encyclopedia of Mathematics and its Applications. Cambridge University Press 53 (1999). Zbl0918.05001MR1728076
- [27] J. Pitman, Combinatorial stochastic processes. Lect. Notes Math. 1875 (2006). Zbl1103.60004MR2245368
- [28] G. Polya and G. szego, Problems and Theorems in Analysis, Vol. VI. Springer-Verlag (1970).
- [29] L. Salasnich, Ideal quantum gas in D-dimensional space and power law potentials, J. Math. Phys.41 (2000) 8016–8024. Zbl1062.82500MR1796824
- [30] D. Stark, Logical limit laws for logarithmic structures, Math. Proc. Cambridge Philos. Soc.140 (2005) 537–544. Zbl1096.03035MR2225646
- [31] A. Vershik, Statistical mechanics of combinatorial partitions and their limit configurations. Funct. Anal. Appl.30 (1996) 90–105. Zbl0868.05004MR1402079
- [32] A. Vershik and Yu. Yakubovich, Fluctuations of the maximal particle energy of the quantum ideal gas and random partitions. Commun. Math. Phys.261 (2006) 759–769. Zbl1113.82010MR2197546
- [33] P. Whittle, Systems in stochastic equilibrium. Wiley (1986). Zbl0665.60107MR850012
- [34] Yu. Yakubovich, Ergodicity of multiple statistics. arXiv:0901.4655v2 [math.CO] (2009).
- [35] K. Yeats, A multiplicative analogue of Schur’s Tauberian theorem. Can. Math. Bull.46 (2003) 473–480. Zbl1068.40005MR1994871