Displaying similar documents to “A categorical concept of completion of objects”

Bimorphisms in pro-homotopy and proper homotopy

Jerzy Dydak, Francisco Ruiz del Portal (1999)

Fundamenta Mathematicae

Similarity:

A morphism of a category which is simultaneously an epimorphism and a monomorphism is called a bimorphism. The category is balanced if every bimorphism is an isomorphism. In the paper properties of bimorphisms of several categories are discussed (pro-homotopy, shape, proper homotopy) and the question of those categories being balanced is raised. Our most interesting result is that a bimorphism f:X → Y of t o w ( H 0 ) is an isomorphism if Y is movable. Recall that ( H 0 ) is the full subcategory of p r o - H 0 ...

Large families of dense pseudocompact subgroups of compact groups

Gerald Itzkowitz, Dmitri Shakhmatov (1995)

Fundamenta Mathematicae

Similarity:

We prove that every nonmetrizable compact connected Abelian group G has a family H of size |G|, the maximal size possible, consisting of proper dense pseudocompact subgroups of G such that H ∩ H'={0} for distinct H,H' ∈ H. An easy example shows that connectedness of G is essential in the above result. In the general case we establish that every nonmetrizable compact Abelian group G has a family H of size |G| consisting of proper dense pseudocompact subgroups of G such that each intersection...

Expansions of the real line by open sets: o-minimality and open cores

Chris Miller, Patrick Speissegger (1999)

Fundamenta Mathematicae

Similarity:

The open core of a structure ℜ := (ℝ,<,...) is defined to be the reduct (in the sense of definability) of ℜ generated by all of its definable open sets. If the open core of ℜ is o-minimal, then the topological closure of any definable set has finitely many connected components. We show that if every definable subset of ℝ is finite or uncountable, or if ℜ defines addition and multiplication and every definable open subset of ℝ has finitely many connected components, then the open core...

On open maps of Borel sets

A. Ostrovsky (1995)

Fundamenta Mathematicae

Similarity:

We answer in the affirmative [Th. 3 or Corollary 1] the question of L. V. Keldysh [5, p. 648]: can every Borel set X lying in the space of irrational numbers ℙ not G δ · F σ and of the second category in itself be mapped onto an arbitrary analytic set Y ⊂ ℙ of the second category in itself by an open map? Note that under a space of the second category in itself Keldysh understood a Baire space. The answer to the question as stated is negative if X is Baire but Y is not Baire.

On extending automorphisms of models of Peano Arithmetic

Roman Kossak, Henryk Kotlarski (1996)

Fundamenta Mathematicae

Similarity:

Continuing the earlier research in [10] we give some information on extending automorphisms of models of PA to end extensions and cofinal extensions.

Goldstern–Judah–Shelah preservation theorem for countable support iterations

Miroslav Repický (1994)

Fundamenta Mathematicae

Similarity:

[1] T. Bartoszyński, Additivity of measure implies additivity of category, Trans. Amer. Math. Soc. 281 (1984), 209-213. [2] T. Bartoszyński and H. Judah, Measure and Category, in preparation. [3] D. H. Fremlin, Cichoń’s diagram, Publ. Math. Univ. Pierre Marie Curie 66, Sém. Initiation Anal., 1983/84, Exp. 5, 13 pp. [4] M. Goldstern, Tools for your forcing construction, in: Set Theory of the Reals, Conference of Bar-Ilan University, H. Judah (ed.), Israel Math. Conf. Proc. 6, 1992, 307-362....

Fundamental pro-groupoids and covering projections

Luis Hernández-Paricio (1998)

Fundamenta Mathematicae

Similarity:

We introduce a new notion of covering projection E → X of a topological space X which reduces to the usual notion if X is locally connected. We use locally constant presheaves and covering reduced sieves to find a pro-groupoid π crs (X) and an induced category pro (π crs (X), Sets) such that for any topological space X the category of covering projections and transformations of X is equivalent to the category pro (π crs (X), Sets). We also prove that the latter category is equivalent...