The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A categorical concept of completion of objects”

Bimorphisms in pro-homotopy and proper homotopy

Jerzy Dydak, Francisco Ruiz del Portal (1999)

Fundamenta Mathematicae

Similarity:

A morphism of a category which is simultaneously an epimorphism and a monomorphism is called a bimorphism. The category is balanced if every bimorphism is an isomorphism. In the paper properties of bimorphisms of several categories are discussed (pro-homotopy, shape, proper homotopy) and the question of those categories being balanced is raised. Our most interesting result is that a bimorphism f:X → Y of t o w ( H 0 ) is an isomorphism if Y is movable. Recall that ( H 0 ) is the full subcategory of p r o - H 0 ...

Large families of dense pseudocompact subgroups of compact groups

Gerald Itzkowitz, Dmitri Shakhmatov (1995)

Fundamenta Mathematicae

Similarity:

We prove that every nonmetrizable compact connected Abelian group G has a family H of size |G|, the maximal size possible, consisting of proper dense pseudocompact subgroups of G such that H ∩ H'={0} for distinct H,H' ∈ H. An easy example shows that connectedness of G is essential in the above result. In the general case we establish that every nonmetrizable compact Abelian group G has a family H of size |G| consisting of proper dense pseudocompact subgroups of G such that each intersection...

Expansions of the real line by open sets: o-minimality and open cores

Chris Miller, Patrick Speissegger (1999)

Fundamenta Mathematicae

Similarity:

The open core of a structure ℜ := (ℝ,<,...) is defined to be the reduct (in the sense of definability) of ℜ generated by all of its definable open sets. If the open core of ℜ is o-minimal, then the topological closure of any definable set has finitely many connected components. We show that if every definable subset of ℝ is finite or uncountable, or if ℜ defines addition and multiplication and every definable open subset of ℝ has finitely many connected components, then the open core...

On open maps of Borel sets

A. Ostrovsky (1995)

Fundamenta Mathematicae

Similarity:

We answer in the affirmative [Th. 3 or Corollary 1] the question of L. V. Keldysh [5, p. 648]: can every Borel set X lying in the space of irrational numbers ℙ not G δ · F σ and of the second category in itself be mapped onto an arbitrary analytic set Y ⊂ ℙ of the second category in itself by an open map? Note that under a space of the second category in itself Keldysh understood a Baire space. The answer to the question as stated is negative if X is Baire but Y is not Baire.

On extending automorphisms of models of Peano Arithmetic

Roman Kossak, Henryk Kotlarski (1996)

Fundamenta Mathematicae

Similarity:

Continuing the earlier research in [10] we give some information on extending automorphisms of models of PA to end extensions and cofinal extensions.

Goldstern–Judah–Shelah preservation theorem for countable support iterations

Miroslav Repický (1994)

Fundamenta Mathematicae

Similarity:

[1] T. Bartoszyński, Additivity of measure implies additivity of category, Trans. Amer. Math. Soc. 281 (1984), 209-213. [2] T. Bartoszyński and H. Judah, Measure and Category, in preparation. [3] D. H. Fremlin, Cichoń’s diagram, Publ. Math. Univ. Pierre Marie Curie 66, Sém. Initiation Anal., 1983/84, Exp. 5, 13 pp. [4] M. Goldstern, Tools for your forcing construction, in: Set Theory of the Reals, Conference of Bar-Ilan University, H. Judah (ed.), Israel Math. Conf. Proc. 6, 1992, 307-362....

Fundamental pro-groupoids and covering projections

Luis Hernández-Paricio (1998)

Fundamenta Mathematicae

Similarity:

We introduce a new notion of covering projection E → X of a topological space X which reduces to the usual notion if X is locally connected. We use locally constant presheaves and covering reduced sieves to find a pro-groupoid π crs (X) and an induced category pro (π crs (X), Sets) such that for any topological space X the category of covering projections and transformations of X is equivalent to the category pro (π crs (X), Sets). We also prove that the latter category is equivalent...