Ideal class groups of cyclotomic number fields II

Franz Lemmermeyer

Acta Arithmetica (1998)

  • Volume: 84, Issue: 1, page 59-70
  • ISSN: 0065-1036

How to cite

top

Franz Lemmermeyer. "Ideal class groups of cyclotomic number fields II." Acta Arithmetica 84.1 (1998): 59-70. <http://eudml.org/doc/207135>.

@article{FranzLemmermeyer1998,
author = {Franz Lemmermeyer},
journal = {Acta Arithmetica},
keywords = {CM-fields; cyclotomic fields; class numbers; ideal class groups; class field theory; class field towers; capitulation kernel},
language = {eng},
number = {1},
pages = {59-70},
title = {Ideal class groups of cyclotomic number fields II},
url = {http://eudml.org/doc/207135},
volume = {84},
year = {1998},
}

TY - JOUR
AU - Franz Lemmermeyer
TI - Ideal class groups of cyclotomic number fields II
JO - Acta Arithmetica
PY - 1998
VL - 84
IS - 1
SP - 59
EP - 70
LA - eng
KW - CM-fields; cyclotomic fields; class numbers; ideal class groups; class field theory; class field towers; capitulation kernel
UR - http://eudml.org/doc/207135
ER -

References

top
  1. [1] C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, GP/PARI calculator. 
  2. [2] P. Cornacchia, Anderson's module for cyclotomic fields of prime conductor, preprint, 1997. Zbl0888.11045
  3. [3] G. Cornell and L. Washington, Class numbers of cyclotomic fields, J. Number Theory 21 (1985), 260-274. Zbl0582.12005
  4. [4] G. Gras, Sur les l-classes d'idéaux dans les extensions cubiques relatives de degré l, Ann. Inst. Fourier (Grenoble) 23 (3) (1973), 1-48. Zbl0276.12013
  5. [5] R. Greenberg, On some questions concerning the Iwasawa invariants, Ph.D. thesis, Princeton, 1971. 
  6. [6] G. Guerry, Sur la 2-composante du groupe des classes de certaines extensions cycliques de degré 2 N , J. Number Theory 53 (1995), 159-172. Zbl0833.11054
  7. [7] E. Inaba, Über die Struktur der l-Klassengruppe zyklischer Zahlkörper vom Primzahlgrad l, J. Fac. Sci. Univ. Tokyo Sect. I 4 (1940), 61-115. Zbl0024.01002
  8. [8] K. Iwasawa, A note on the group of units of an algebraic number field, J. Math. Pures Appl. 35 (1956), 189-192. Zbl0071.26504
  9. [9] J. F. Jaulent, L'état actuel du problème de la capitulation, Sém. Théor. Nombres Bordeaux, 1987/88, exp. 17, 33 pp. 
  10. [10] S. Jeannin, Nombre de classes et unités des corps de nombres cycliques quintiques d'E. Lehmer, J. Théor. Nombres Bordeaux 8 (1996), 75-92. 
  11. [11] W. Jehne, On knots in algebraic number theory, J. Reine Angew. Math. 311/312 (1979), 215-254. Zbl0432.12006
  12. [12] Y. Kida, l-extensions of CM-fields and cyclotomic invariants, J. Number Theory 12 (1980), 519-528. Zbl0455.12007
  13. [13] F. Lemmermeyer, Ideal class groups of cyclotomic number fields I, Acta Arith. 72 (1995), 347-359. Zbl0837.11059
  14. [14] F. Lemmermeyer, Unramified quaternion extensions of quadratic number fields, J. Théor. Nombres Bordeaux 9 (1997), 51-68. Zbl0890.11031
  15. [15] F. van der Linden, Class number computations in real abelian number fields, Math. Comp. 39 (1982), 693-707. Zbl0505.12010
  16. [16] S. Mäki, The Determination of Units in Real Cyclic Sextic Fields, Lecture Notes in Math. 797, Springer, 1980. Zbl0423.12006
  17. [17] J. Martinet, Tours de corps de classes et estimations de discriminants, Invent. Math. 44 (1978), 65-73. Zbl0369.12007
  18. [18] N. Matsumura, On the class field tower of an imaginary quadratic number field, Mem. Fac. Sci. Kyushu Univ. Ser. A 31 (1977), 165-177. Zbl0374.12003
  19. [19] R. J. Milgram, Odd index subgroups of units in cyclotomic fields and applications, in: Lecture Notes in Math. 854, Springer, 1981, 269-298. 
  20. [20] T. Morishima, On the second factor of the class number of the cyclotomic field, J. Math. Anal. Appl. 15 (1966), 141-153. Zbl0139.28201
  21. [21] M. Moriya, Über die Klassenzahl eines relativ-zyklischen Zahlkörpers von Primzahlgrad, Japan. J. Math. 10 (1933), 1-18. Zbl59.0193.04
  22. [22] M. Ozaki, On the p-rank of the ideal class group of the maximal real subfield of a cyclotomic field, preprint, 1997. 
  23. [23] L. Rédei, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, Math. Naturwiss. Anz. Ungar. Akad. d. Wiss. 49 (1932), 338-363. Zbl0008.19502
  24. [24] L. Rédei und H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math. 170 (1933), 69-74. Zbl59.0192.01
  25. [25] B. Schmithals, Konstruktion imaginärquadratischer Körper mit unendlichem Klassenkörperturm, Arch. Math. (Basel) 34 (1980), 307-312. Zbl0448.12008
  26. [26] A. Scholz, Über die Lösbarkeit der Gleichung t²-Du² =-4, Math. Z. 39 (1934), 95-111. Zbl0009.29402
  27. [27] R. Schoof, Infinite class field towers of quadratic fields, J. Reine Angew. Math. 372 (1986), 209-220. Zbl0589.12011
  28. [28] R. Schoof, Minus class groups of the fields of the l-th roots of unity, Math. Comp., to appear. Zbl0902.11043
  29. [29] R. Schoof, Class numbers of ℚ(cos2π/p), to appear (cf. [32], pp. 420-423). 
  30. [30] P. Stevenhagen, On the parity of cyclotomic class numbers, Math. Comp. 63 (1994), 773-784. Zbl0819.11050
  31. [31] K. Tateyama, On the ideal class groups of some cyclotomic fields, Proc. Japan Acad. 58 (1980), 333-335. Zbl0509.12005
  32. [32] L. Washington, Introduction to Cyclotomic Fields, 2nd ed., Springer, 1997. Zbl0966.11047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.