Ideal class groups of cyclotomic number fields II
Acta Arithmetica (1998)
- Volume: 84, Issue: 1, page 59-70
 - ISSN: 0065-1036
 
Access Full Article
topHow to cite
topFranz Lemmermeyer. "Ideal class groups of cyclotomic number fields II." Acta Arithmetica 84.1 (1998): 59-70. <http://eudml.org/doc/207135>.
@article{FranzLemmermeyer1998,
	author = {Franz Lemmermeyer},
	journal = {Acta Arithmetica},
	keywords = {CM-fields; cyclotomic fields; class numbers; ideal class groups; class field theory; class field towers; capitulation kernel},
	language = {eng},
	number = {1},
	pages = {59-70},
	title = {Ideal class groups of cyclotomic number fields II},
	url = {http://eudml.org/doc/207135},
	volume = {84},
	year = {1998},
}
TY  - JOUR
AU  - Franz Lemmermeyer
TI  - Ideal class groups of cyclotomic number fields II
JO  - Acta Arithmetica
PY  - 1998
VL  - 84
IS  - 1
SP  - 59
EP  - 70
LA  - eng
KW  - CM-fields; cyclotomic fields; class numbers; ideal class groups; class field theory; class field towers; capitulation kernel
UR  - http://eudml.org/doc/207135
ER  - 
References
top- [1] C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, GP/PARI calculator.
 - [2] P. Cornacchia, Anderson's module for cyclotomic fields of prime conductor, preprint, 1997. Zbl0888.11045
 - [3] G. Cornell and L. Washington, Class numbers of cyclotomic fields, J. Number Theory 21 (1985), 260-274. Zbl0582.12005
 - [4] G. Gras, Sur les l-classes d'idéaux dans les extensions cubiques relatives de degré l, Ann. Inst. Fourier (Grenoble) 23 (3) (1973), 1-48. Zbl0276.12013
 - [5] R. Greenberg, On some questions concerning the Iwasawa invariants, Ph.D. thesis, Princeton, 1971.
 - [6] G. Guerry, Sur la 2-composante du groupe des classes de certaines extensions cycliques de degré , J. Number Theory 53 (1995), 159-172. Zbl0833.11054
 - [7] E. Inaba, Über die Struktur der l-Klassengruppe zyklischer Zahlkörper vom Primzahlgrad l, J. Fac. Sci. Univ. Tokyo Sect. I 4 (1940), 61-115. Zbl0024.01002
 - [8] K. Iwasawa, A note on the group of units of an algebraic number field, J. Math. Pures Appl. 35 (1956), 189-192. Zbl0071.26504
 - [9] J. F. Jaulent, L'état actuel du problème de la capitulation, Sém. Théor. Nombres Bordeaux, 1987/88, exp. 17, 33 pp.
 - [10] S. Jeannin, Nombre de classes et unités des corps de nombres cycliques quintiques d'E. Lehmer, J. Théor. Nombres Bordeaux 8 (1996), 75-92.
 - [11] W. Jehne, On knots in algebraic number theory, J. Reine Angew. Math. 311/312 (1979), 215-254. Zbl0432.12006
 - [12] Y. Kida, l-extensions of CM-fields and cyclotomic invariants, J. Number Theory 12 (1980), 519-528. Zbl0455.12007
 - [13] F. Lemmermeyer, Ideal class groups of cyclotomic number fields I, Acta Arith. 72 (1995), 347-359. Zbl0837.11059
 - [14] F. Lemmermeyer, Unramified quaternion extensions of quadratic number fields, J. Théor. Nombres Bordeaux 9 (1997), 51-68. Zbl0890.11031
 - [15] F. van der Linden, Class number computations in real abelian number fields, Math. Comp. 39 (1982), 693-707. Zbl0505.12010
 - [16] S. Mäki, The Determination of Units in Real Cyclic Sextic Fields, Lecture Notes in Math. 797, Springer, 1980. Zbl0423.12006
 - [17] J. Martinet, Tours de corps de classes et estimations de discriminants, Invent. Math. 44 (1978), 65-73. Zbl0369.12007
 - [18] N. Matsumura, On the class field tower of an imaginary quadratic number field, Mem. Fac. Sci. Kyushu Univ. Ser. A 31 (1977), 165-177. Zbl0374.12003
 - [19] R. J. Milgram, Odd index subgroups of units in cyclotomic fields and applications, in: Lecture Notes in Math. 854, Springer, 1981, 269-298.
 - [20] T. Morishima, On the second factor of the class number of the cyclotomic field, J. Math. Anal. Appl. 15 (1966), 141-153. Zbl0139.28201
 - [21] M. Moriya, Über die Klassenzahl eines relativ-zyklischen Zahlkörpers von Primzahlgrad, Japan. J. Math. 10 (1933), 1-18. Zbl59.0193.04
 - [22] M. Ozaki, On the p-rank of the ideal class group of the maximal real subfield of a cyclotomic field, preprint, 1997.
 - [23] L. Rédei, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, Math. Naturwiss. Anz. Ungar. Akad. d. Wiss. 49 (1932), 338-363. Zbl0008.19502
 - [24] L. Rédei und H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers, J. Reine Angew. Math. 170 (1933), 69-74. Zbl59.0192.01
 - [25] B. Schmithals, Konstruktion imaginärquadratischer Körper mit unendlichem Klassenkörperturm, Arch. Math. (Basel) 34 (1980), 307-312. Zbl0448.12008
 - [26] A. Scholz, Über die Lösbarkeit der Gleichung t²-Du² =-4, Math. Z. 39 (1934), 95-111. Zbl0009.29402
 - [27] R. Schoof, Infinite class field towers of quadratic fields, J. Reine Angew. Math. 372 (1986), 209-220. Zbl0589.12011
 - [28] R. Schoof, Minus class groups of the fields of the l-th roots of unity, Math. Comp., to appear. Zbl0902.11043
 - [29] R. Schoof, Class numbers of ℚ(cos2π/p), to appear (cf. [32], pp. 420-423).
 - [30] P. Stevenhagen, On the parity of cyclotomic class numbers, Math. Comp. 63 (1994), 773-784. Zbl0819.11050
 - [31] K. Tateyama, On the ideal class groups of some cyclotomic fields, Proc. Japan Acad. 58 (1980), 333-335. Zbl0509.12005
 - [32] L. Washington, Introduction to Cyclotomic Fields, 2nd ed., Springer, 1997. Zbl0966.11047
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.