Displaying similar documents to “Cardinal invariants and compactifications”

On π -metrizable spaces, their continuous images and products

Derrick Stover (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space X is said to be π -metrizable if it has a σ -discrete π -base. The behavior of π -metrizable spaces under certain types of mappings is studied. In particular we characterize strongly d -separable spaces as those which are the image of a π -metrizable space under a perfect mapping. Each Tychonoff space can be represented as the image of a π -metrizable space under an open continuous mapping. A question posed by Arhangel’skii regarding if a π -metrizable topological group must be metrizable...

𝒫 -approximable compact spaces

Mihail G. Tkachenko (1991)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For every topological property 𝒫 , we define the class of 𝒫 -approximable spaces which consists of spaces X having a countable closed cover γ such that the “section” X ( x , γ ) = { F γ : x F } has the property 𝒫 for each x X . It is shown that every 𝒫 -approximable compact space has 𝒫 , if 𝒫 is one of the following properties: countable tightness, 0 -scatteredness with respect to character, C -closedness, sequentiality (the last holds under MA or 2 0 < 2 1 ). Metrizable-approximable spaces are studied: every compact space in...

Convergence in compacta and linear Lindelöfness

Aleksander V. Arhangel&amp;#039;skii, Raushan Z. Buzyakova (1998)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X be a compact Hausdorff space with a point x such that X { x } is linearly Lindelöf. Is then X first countable at x ? What if this is true for every x in X ? We consider these and some related questions, and obtain partial answers; in particular, we prove that the answer to the second question is “yes” when X is, in addition, ω -monolithic. We also prove that if X is compact, Hausdorff, and X { x } is strongly discretely Lindelöf, for every x in X , then X is first countable. An example of linearly...