The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Copies of l 1 and c o in Musielak-Orlicz sequence spaces”

On the distribution of random variables corresponding to Musielak-Orlicz norms

David Alonso-Gutiérrez, Sören Christensen, Markus Passenbrunner, Joscha Prochno (2013)

Studia Mathematica

Similarity:

Given a normalized Orlicz function M we provide an easy formula for a distribution such that, if X is a random variable distributed accordingly and X₁,...,Xₙ are independent copies of X, then 1 / C p | | x | | M | | ( x i X i ) i = 1 | | p C p | | x | | M , where C p is a positive constant depending only on p. In case p = 2 we need the function t ↦ tM’(t) - M(t) to be 2-concave and as an application immediately obtain an embedding of the corresponding Orlicz spaces into L₁[0,1]. We also provide a general result replacing the p -norm by an arbitrary...

On the k-convexity of the Besicovitch-Orlicz space of almost periodic functions with the Orlicz norm

Fazia Bedouhene, Mohamed Morsli (2007)

Colloquium Mathematicae

Similarity:

Boulahia and the present authors introduced the Orlicz norm in the class B ϕ -a.p. of Besicovitch-Orlicz almost periodic functions and gave several formulas for it; they also characterized the reflexivity of this space [Comment. Math. Univ. Carolin. 43 (2002)]. In the present paper, we consider the problem of k-convexity of B ϕ -a.p. with respect to the Orlicz norm; we give necessary and sufficient conditions in terms of strict convexity and reflexivity.

Geometry of Orlicz spaces

Chen Shutao

Similarity:

CONTENTSPreface..............................................................................................................................4Introduction........................................................................................................................51. Orlicz spaces..................................................................................................................6 1.1. Orlicz functions...........................................................................................................6 1.2....

On some properties for dual spaces of Musielak-Orlicz function spaces

Zenon Zbąszyniak (2011)

Banach Center Publications

Similarity:

We will present relationships between the modular ρ* and the norm in the dual spaces ( L Φ ) * in the case when a Musielak-Orlicz space L Φ is equipped with the Orlicz norm. Moreover, criteria for extreme points of the unit sphere of the dual space ( L Φ ) * will be presented.

An operator characterization of L p -spaces in a class of Orlicz spaces

Maciej Burnecki (2008)

Banach Center Publications

Similarity:

We consider an embedding of the group of invertible transformations of [0,1] into the algebra of bounded linear operators on an Orlicz space. We show that if this embedding preserves the group action then the Orlicz space is an L p -space for some 1 ≤ p < ∞.

Cantor-Bernstein theorems for Orlicz sequence spaces

Carlos E. Finol, Marcos J. González, Marek Wójtowicz (2014)

Banach Center Publications

Similarity:

For two Banach spaces X and Y, we write d i m ( X ) = d i m ( Y ) if X embeds into Y and vice versa; then we say that X and Y have the same linear dimension. In this paper, we consider classes of Banach spaces with symmetric bases. We say that such a class ℱ has the Cantor-Bernstein property if for every X,Y ∈ ℱ the condition d i m ( X ) = d i m ( Y ) implies the respective bases (of X and Y) are equivalent, and hence the spaces X and Y are isomorphic. We prove (Theorems 3.1, 3.3, 3.5) that the class of Orlicz sequence spaces generated...

Inductive limit topologies on Orlicz spaces

Marian Nowak (1991)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let L ϕ be an Orlicz space defined by a convex Orlicz function ϕ and let E ϕ be the space of finite elements in L ϕ (= the ideal of all elements of order continuous norm). We show that the usual norm topology 𝒯 ϕ on L ϕ restricted to E ϕ can be obtained as an inductive limit topology with respect to some family of other Orlicz spaces. As an application we obtain a characterization of continuity of linear operators defined on E ϕ .

Some approximation results in Musielak-Orlicz spaces

Ahmed Youssfi, Youssef Ahmida (2020)

Czechoslovak Mathematical Journal

Similarity:

We prove the continuity in norm of the translation operator in the Musielak-Orlicz L M spaces. An application to the convergence in norm of approximate identities is given, whereby we prove density results of the smooth functions in L M , in both the modular and norm topologies. These density results are then applied to obtain basic topological properties.

Fenchel-Orlicz spaces

Barry Turett

Similarity:

CONTENTSIntroduction............................................................................... 51. Definitions and preliminary results......................................... 72. Completeness of L Φ ( μ , ) .............................. 93. Linear functionals on L Φ ( μ , ) ....................... 264. Geometry of Fenchel-Orlicz spaces........................................ 41References....................................................................................... 54

Reflexive subspaces of some Orlicz spaces

Emmanuelle Lavergne (2008)

Colloquium Mathematicae

Similarity:

We show that when the conjugate of an Orlicz function ϕ satisfies the growth condition Δ⁰, then the reflexive subspaces of L ϕ are closed in the L¹-norm. For that purpose, we use (and give a new proof of) a result of J. Alexopoulos saying that weakly compact subsets of such L ϕ have equi-absolutely continuous norm.