The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Approximate properties of principal solutions of Volterra-type integrodifferential equations with infinite aftereffect”

Asymptotic relationship between solutions of two linear differential systems

Jozef Miklo (1998)

Mathematica Bohemica

Similarity:

In this paper new generalized notions are defined: Ψ -boundedness and Ψ -asymptotic equivalence, where Ψ is a complex continuous nonsingular n × n matrix. The Ψ -asymptotic equivalence of linear differential systems y ' = A ( t ) y and x ' = A ( t ) x + B ( t ) x is proved when the fundamental matrix of y ' = A ( t ) y is Ψ -bounded.

Essential norms of a potential theoretic boundary integral operator in L 1

Josef Král, Dagmar Medková (1998)

Mathematica Bohemica

Similarity:

Let G m ( m 2 ) be an open set with a compact boundary B and let σ 0 be a finite measure on B . Consider the space L 1 ( σ ) of all σ -integrable functions on B and, for each f L 1 ( σ ) , denote by f σ the signed measure on B arising by multiplying σ by f in the usual way. 𝒩 σ f denotes the weak normal derivative (w.r. to G ) of the Newtonian (in case m > 2 ) or the logarithmic (in case n = 2 ) potential of f σ , correspondingly. Sharp geometric estimates are obtained for the essential norms of the operator 𝒩 σ - α I (here α ...

Note on functions satisfying the integral Hölder condition

Josef, Jr. Král (1996)

Mathematica Bohemica

Similarity:

Given a modulus of continuity ω and q [ 1 , [ then H q ω denotes the space of all functions f with the period 1 on that are locally integrable in power q and whose integral modulus of continuity of power q (see(1)) is majorized by a multiple of ω . The moduli of continuity ω are characterized for which H q ω contains “many” functions with infinite “essential” variation on an interval of length 1 .

A method for determining constants in the linear combination of exponentials

Jiří Cerha (1996)

Mathematica Bohemica

Similarity:

Shifting a numerically given function b 1 exp a 1 t + + b n exp a n t we obtain a fundamental matrix of the linear differential system y ˙ = A y with a constant matrix A . Using the fundamental matrix we calculate A , calculating the eigenvalues of A we obtain a 1 , , a n and using the least square method we determine b 1 , , b n .