Essential norms of a potential theoretic boundary integral operator in
Mathematica Bohemica (1998)
- Volume: 123, Issue: 4, page 419-436
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKrál, Josef, and Medková, Dagmar. "Essential norms of a potential theoretic boundary integral operator in $L^1$." Mathematica Bohemica 123.4 (1998): 419-436. <http://eudml.org/doc/248312>.
@article{Král1998,
abstract = {Let $G \subset \mathbb \{R\}^m$$(m \ge 2)$ be an open set with a compact boundary $B$ and let $\sigma \ge 0$ be a finite measure on $B$. Consider the space $L^1(\sigma )$ of all $\sigma $-integrable functions on $B$ and, for each $f \in L^1(\sigma )$, denote by $f \sigma $ the signed measure on $B$ arising by multiplying $\sigma $ by $f$ in the usual way. $\mathcal \{N\}_\{\sigma \}f$ denotes the weak normal derivative (w.r. to $G$) of the Newtonian (in case $m >2$) or the logarithmic (in case $n=2$) potential of $f\sigma $, correspondingly. Sharp geometric estimates are obtained for the essential norms of the operator $\mathcal \{N\}_\{\sigma \} - \alpha I$ (here $\alpha \in \mathbb \{R\}$ and $I$ stands for the identity operator on $L^1(\sigma )$) corresponding to various norms on $L^1(\sigma )$ inducing the topology of standard convergence in the mean w.r. to $\sigma $.},
author = {Král, Josef, Medková, Dagmar},
journal = {Mathematica Bohemica},
keywords = {single layer potential; weak normal derivative; essential norm; single layer potential; weak normal derivative; essential norm},
language = {eng},
number = {4},
pages = {419-436},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Essential norms of a potential theoretic boundary integral operator in $L^1$},
url = {http://eudml.org/doc/248312},
volume = {123},
year = {1998},
}
TY - JOUR
AU - Král, Josef
AU - Medková, Dagmar
TI - Essential norms of a potential theoretic boundary integral operator in $L^1$
JO - Mathematica Bohemica
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 123
IS - 4
SP - 419
EP - 436
AB - Let $G \subset \mathbb {R}^m$$(m \ge 2)$ be an open set with a compact boundary $B$ and let $\sigma \ge 0$ be a finite measure on $B$. Consider the space $L^1(\sigma )$ of all $\sigma $-integrable functions on $B$ and, for each $f \in L^1(\sigma )$, denote by $f \sigma $ the signed measure on $B$ arising by multiplying $\sigma $ by $f$ in the usual way. $\mathcal {N}_{\sigma }f$ denotes the weak normal derivative (w.r. to $G$) of the Newtonian (in case $m >2$) or the logarithmic (in case $n=2$) potential of $f\sigma $, correspondingly. Sharp geometric estimates are obtained for the essential norms of the operator $\mathcal {N}_{\sigma } - \alpha I$ (here $\alpha \in \mathbb {R}$ and $I$ stands for the identity operator on $L^1(\sigma )$) corresponding to various norms on $L^1(\sigma )$ inducing the topology of standard convergence in the mean w.r. to $\sigma $.
LA - eng
KW - single layer potential; weak normal derivative; essential norm; single layer potential; weak normal derivative; essential norm
UR - http://eudml.org/doc/248312
ER -
References
top- T. S. Angell R. E. Kleinman J. Král, Layer potentials on boundaries with corners and edges, Časopis Pěst. Mat. 113 (1988), 387-402. (1988) MR0981880
- Yu. D. Burago V. G. Maz'ya, Some problems of potential theory and function theory for domains with nonregular boundaries, Zapiski Naučnych Seminarov LOMI 3 (1967). (In Russian.) (1967)
- N. Dunford J. T Schwartz W. G. Bade R. G. Barth, Linear Operators, Part I, Interscience Publishers, New York, 1958. (1958) MR0117523
- H. Federer, 10.1090/S0002-9947-1945-0013786-6, Trans. Amer. Math. Soc. 58 (1945), 44-76. (1945) Zbl0060.14102MR0013786DOI10.1090/S0002-9947-1945-0013786-6
- H. Federer, Geometric Measure Theory, Springer-Verlag, 1969. (1969) Zbl0176.00801MR0257325
- I. Gohberg R. Markus, Some remarks on topologically equivalent norms, Izv. Mold. Fil. Akad. Nauk SSSR 10(76) (1960), 91-95. (In Russian.) (1960)
- J. Král, 10.1007/BFb0091035, Lecture Notes in Mathematics vol. 823, Springer-Verlag, 1980. (1980) MR0590244DOI10.1007/BFb0091035
- J. Král, Problème de Neumann faible avec condition frontière dans , Séminaire de Théorie du Potentiel (Université Paris VI) No. 9. Lecture Notes in Mathematics 1393, Springer-Verlag, 1989, pp. 145-160. (1989)
- J. Král, 10.2307/1994580, Trans. Amer. Math. Soc. 125 (1996), 511-547. (1996) MR0209503DOI10.2307/1994580
- J. Král D. Medková, Angular limits of double layer potentials, Czechoslovak Math. J. 45 (1995), 267-292. (1995) MR1331464
- J. Král W. Wendland, Some examples concerning applicability of the Fredholm-Radon method in potential theory, Apl. Mat. 31 (1986), 293-308. (1986) MR0854323
- V. G. Maz'ya, Boundary Integral Equations, Encyclopaedia of Mathematical Sciences 27, Analysis IV, Springer-Verlag, 1991. (1991) Zbl0778.00012MR1098507
- I. Netuka, Generalized Robin problem in potential theory, Czechoslovak Math. J. 22 (1970), 312-324. (1970) MR0294673
- I. Netuka, The third boundary value problem in potential theory, Czechoslovak Math. J. 22 (1972), 554-580. (1972) Zbl0242.31007MR0313528
- J. Neveu, Bases Mathématiques du Calcul des Probabilités, Masson et Cie, Paris, 1964. (1964) Zbl0137.11203MR0198504
- L. C. Young, A theory of boundary values, Proc. London Math. Soc. 14A (1965), 300-314. (1965) Zbl0147.07802MR0180891
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.