Essential norms of a potential theoretic boundary integral operator in L 1

Josef Král; Dagmar Medková

Mathematica Bohemica (1998)

  • Volume: 123, Issue: 4, page 419-436
  • ISSN: 0862-7959

Abstract

top
Let G m ( m 2 ) be an open set with a compact boundary B and let σ 0 be a finite measure on B . Consider the space L 1 ( σ ) of all σ -integrable functions on B and, for each f L 1 ( σ ) , denote by f σ the signed measure on B arising by multiplying σ by f in the usual way. 𝒩 σ f denotes the weak normal derivative (w.r. to G ) of the Newtonian (in case m > 2 ) or the logarithmic (in case n = 2 ) potential of f σ , correspondingly. Sharp geometric estimates are obtained for the essential norms of the operator 𝒩 σ - α I (here α and I stands for the identity operator on L 1 ( σ ) ) corresponding to various norms on L 1 ( σ ) inducing the topology of standard convergence in the mean w.r. to σ .

How to cite

top

Král, Josef, and Medková, Dagmar. "Essential norms of a potential theoretic boundary integral operator in $L^1$." Mathematica Bohemica 123.4 (1998): 419-436. <http://eudml.org/doc/248312>.

@article{Král1998,
abstract = {Let $G \subset \mathbb \{R\}^m$$(m \ge 2)$ be an open set with a compact boundary $B$ and let $\sigma \ge 0$ be a finite measure on $B$. Consider the space $L^1(\sigma )$ of all $\sigma $-integrable functions on $B$ and, for each $f \in L^1(\sigma )$, denote by $f \sigma $ the signed measure on $B$ arising by multiplying $\sigma $ by $f$ in the usual way. $\mathcal \{N\}_\{\sigma \}f$ denotes the weak normal derivative (w.r. to $G$) of the Newtonian (in case $m >2$) or the logarithmic (in case $n=2$) potential of $f\sigma $, correspondingly. Sharp geometric estimates are obtained for the essential norms of the operator $\mathcal \{N\}_\{\sigma \} - \alpha I$ (here $\alpha \in \mathbb \{R\}$ and $I$ stands for the identity operator on $L^1(\sigma )$) corresponding to various norms on $L^1(\sigma )$ inducing the topology of standard convergence in the mean w.r. to $\sigma $.},
author = {Král, Josef, Medková, Dagmar},
journal = {Mathematica Bohemica},
keywords = {single layer potential; weak normal derivative; essential norm; single layer potential; weak normal derivative; essential norm},
language = {eng},
number = {4},
pages = {419-436},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Essential norms of a potential theoretic boundary integral operator in $L^1$},
url = {http://eudml.org/doc/248312},
volume = {123},
year = {1998},
}

TY - JOUR
AU - Král, Josef
AU - Medková, Dagmar
TI - Essential norms of a potential theoretic boundary integral operator in $L^1$
JO - Mathematica Bohemica
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 123
IS - 4
SP - 419
EP - 436
AB - Let $G \subset \mathbb {R}^m$$(m \ge 2)$ be an open set with a compact boundary $B$ and let $\sigma \ge 0$ be a finite measure on $B$. Consider the space $L^1(\sigma )$ of all $\sigma $-integrable functions on $B$ and, for each $f \in L^1(\sigma )$, denote by $f \sigma $ the signed measure on $B$ arising by multiplying $\sigma $ by $f$ in the usual way. $\mathcal {N}_{\sigma }f$ denotes the weak normal derivative (w.r. to $G$) of the Newtonian (in case $m >2$) or the logarithmic (in case $n=2$) potential of $f\sigma $, correspondingly. Sharp geometric estimates are obtained for the essential norms of the operator $\mathcal {N}_{\sigma } - \alpha I$ (here $\alpha \in \mathbb {R}$ and $I$ stands for the identity operator on $L^1(\sigma )$) corresponding to various norms on $L^1(\sigma )$ inducing the topology of standard convergence in the mean w.r. to $\sigma $.
LA - eng
KW - single layer potential; weak normal derivative; essential norm; single layer potential; weak normal derivative; essential norm
UR - http://eudml.org/doc/248312
ER -

References

top
  1. T. S. Angell R. E. Kleinman J. Král, Layer potentials on boundaries with corners and edges, Časopis Pěst. Mat. 113 (1988), 387-402. (1988) MR0981880
  2. Yu. D. Burago V. G. Maz'ya, Some problems of potential theory and function theory for domains with nonregular boundaries, Zapiski Naučnych Seminarov LOMI 3 (1967). (In Russian.) (1967) 
  3. N. Dunford J. T Schwartz W. G. Bade R. G. Barth, Linear Operators, Part I, Interscience Publishers, New York, 1958. (1958) MR0117523
  4. H. Federer, 10.1090/S0002-9947-1945-0013786-6, Trans. Amer. Math. Soc. 58 (1945), 44-76. (1945) Zbl0060.14102MR0013786DOI10.1090/S0002-9947-1945-0013786-6
  5. H. Federer, Geometric Measure Theory, Springer-Verlag, 1969. (1969) Zbl0176.00801MR0257325
  6. I. Gohberg R. Markus, Some remarks on topologically equivalent norms, Izv. Mold. Fil. Akad. Nauk SSSR 10(76) (1960), 91-95. (In Russian.) (1960) 
  7. J. Král, 10.1007/BFb0091035, Lecture Notes in Mathematics vol. 823, Springer-Verlag, 1980. (1980) MR0590244DOI10.1007/BFb0091035
  8. J. Král, Problème de Neumann faible avec condition frontière dans L 1 , Séminaire de Théorie du Potentiel (Université Paris VI) No. 9. Lecture Notes in Mathematics 1393, Springer-Verlag, 1989, pp. 145-160. (1989) 
  9. J. Král, 10.2307/1994580, Trans. Amer. Math. Soc. 125 (1996), 511-547. (1996) MR0209503DOI10.2307/1994580
  10. J. Král D. Medková, Angular limits of double layer potentials, Czechoslovak Math. J. 45 (1995), 267-292. (1995) MR1331464
  11. J. Král W. Wendland, Some examples concerning applicability of the Fredholm-Radon method in potential theory, Apl. Mat. 31 (1986), 293-308. (1986) MR0854323
  12. V. G. Maz'ya, Boundary Integral Equations, Encyclopaedia of Mathematical Sciences 27, Analysis IV, Springer-Verlag, 1991. (1991) Zbl0778.00012MR1098507
  13. I. Netuka, Generalized Robin problem in potential theory, Czechoslovak Math. J. 22 (1970), 312-324. (1970) MR0294673
  14. I. Netuka, The third boundary value problem in potential theory, Czechoslovak Math. J. 22 (1972), 554-580. (1972) Zbl0242.31007MR0313528
  15. J. Neveu, Bases Mathématiques du Calcul des Probabilités, Masson et Cie, Paris, 1964. (1964) Zbl0137.11203MR0198504
  16. L. C. Young, A theory of boundary values, Proc. London Math. Soc. 14A (1965), 300-314. (1965) Zbl0147.07802MR0180891

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.