### Implications between approximate convexity properties and approximate Hermite-Hadamard inequalities

Judit Makó, Zsolt Páles (2012)

Open Mathematics

Similarity:

The connection between the functional inequalities $$f\left(\frac{x+y}{2}\right)\u2a7d\frac{f\left(x\right)+f\left(y\right)}{2}+{\alpha}_{J}\left(x-y\right),x,y\in D,$$ and $${\int}_{0}^{1}f\left(tx+\left(1-t\right)y\right)\rho \left(t\right)dt\u2a7d\lambda f\left(x\right)+\left(1-\lambda \right)f\left(y\right)+{\alpha}_{\mathrm{H}}\left(x-y\right),x,y\in D,$$ is investigated, where D is a convex subset of a linear space, f: D → ℝ, α H;α J: D-D → ℝ are even functions, λ ∈ [0; 1], and ρ: [0; 1] →ℝ+ is an integrable nonnegative function with ∫01 ρ(t) dt = 1.