Displaying similar documents to “Generalized boundary value problems with linear growth”

On condensing discrete dynamical systems

Valter Šeda (2000)

Mathematica Bohemica

Similarity:

In the paper the fundamental properties of discrete dynamical systems generated by an α -condensing mapping ( α is the Kuratowski measure of noncompactness) are studied. The results extend and deepen those obtained by M. A. Krasnosel’skij and A. V. Lusnikov in []. They are also applied to study a mathematical model for spreading of an infectious disease investigated by P. Takac in [], [].

Linear integral equations in the space of regulated functions

Milan Tvrdý (1998)

Mathematica Bohemica

Similarity:

n this paper we investigate systems of linear integral equations in the space 𝔾 L n of n -vector valued functions which are regulated on the closed interval [ 0 , 1 ] (i.e. such that can have only discontinuities of the first kind in [ 0 , 1 ] ) and left-continuous in the corresponding open interval ( 0 , 1 ) . In particular, we are interested in systems of the form x(t) - A(t)x(0) - 01B(t,s)[d x(s)] = f(t), where f 𝔾 L n , the columns of the n × n -matrix valued function A belong to 𝔾 L n , the entries of B ( t , . ) have a bounded variation...

Reflection and a mixed boundary value problem concerning analytic functions

Eva Dontová, Miroslav Dont, Josef Král (1997)

Mathematica Bohemica

Similarity:

A mixed boundary value problem on a doubly connected domain in the complex plane is investigated. The solution is given in an integral form using reflection mapping. The reflection mapping makes it possible to reduce the problem to an integral equation considered only on a part of the boundary of the domain.

On systems of linear algebraic equations in the Colombeau algebra

Jan Ligęza, Milan Tvrdý (1999)

Mathematica Bohemica

Similarity:

From the fact that the unique solution of a homogeneous linear algebraic system is the trivial one we can obtain the existence of a solution of the nonhomogeneous system. Coefficients of the systems considered are elements of the Colombeau algebra ¯ of generalized real numbers. It is worth mentioning that the algebra ¯ is not a field.