Reflection and a mixed boundary value problem concerning analytic functions

Eva Dontová; Miroslav Dont; Josef Král

Mathematica Bohemica (1997)

  • Volume: 122, Issue: 3, page 317-336
  • ISSN: 0862-7959

Abstract

top
A mixed boundary value problem on a doubly connected domain in the complex plane is investigated. The solution is given in an integral form using reflection mapping. The reflection mapping makes it possible to reduce the problem to an integral equation considered only on a part of the boundary of the domain.

How to cite

top

Dontová, Eva, Dont, Miroslav, and Král, Josef. "Reflection and a mixed boundary value problem concerning analytic functions." Mathematica Bohemica 122.3 (1997): 317-336. <http://eudml.org/doc/248124>.

@article{Dontová1997,
abstract = {A mixed boundary value problem on a doubly connected domain in the complex plane is investigated. The solution is given in an integral form using reflection mapping. The reflection mapping makes it possible to reduce the problem to an integral equation considered only on a part of the boundary of the domain.},
author = {Dontová, Eva, Dont, Miroslav, Král, Josef},
journal = {Mathematica Bohemica},
keywords = {boundary value problem; integral equations; Fredholm type equation; boundary value problem; integral equations; Fredholm type equation},
language = {eng},
number = {3},
pages = {317-336},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Reflection and a mixed boundary value problem concerning analytic functions},
url = {http://eudml.org/doc/248124},
volume = {122},
year = {1997},
}

TY - JOUR
AU - Dontová, Eva
AU - Dont, Miroslav
AU - Král, Josef
TI - Reflection and a mixed boundary value problem concerning analytic functions
JO - Mathematica Bohemica
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 122
IS - 3
SP - 317
EP - 336
AB - A mixed boundary value problem on a doubly connected domain in the complex plane is investigated. The solution is given in an integral form using reflection mapping. The reflection mapping makes it possible to reduce the problem to an integral equation considered only on a part of the boundary of the domain.
LA - eng
KW - boundary value problem; integral equations; Fredholm type equation; boundary value problem; integral equations; Fredholm type equation
UR - http://eudml.org/doc/248124
ER -

References

top
  1. K. Astala, 10.4171/RMI/81, Rev. Mat. Iberoamericana 4 (1988), 469-486. (1988) Zbl0703.30036MR1048585DOI10.4171/RMI/81
  2. Ju. D. Burago V. G. Maz'ja, Some problems of potential theory and theory of functions for domains with nonregular boundaries, Zapiski Naučnych Seminarov LOMI 3 (1967). (In Russian.) (1967) 
  3. E. Dontová, Reflection and the Dirichlet and Neumann problems, Thesis, Prague, 1990. (In Czech.) (1990) 
  4. E. Dontová, Reflection and the Dirichlet problem on doubly connected regions, Časopis Pěst. Mat. 113 (1988), 122-147. (1988) MR0949040
  5. E. Dontová, Reflection and the Neumann problem in doubly connected regions, Časopis Pěst. Mat. 113 (1988), 148-168. (1988) MR0949041
  6. H. Federer, Geometric Measure Theory, Springer-Verlag, 1969. (1969) Zbl0176.00801MR0257325
  7. H. Federer, 10.1090/S0002-9947-1945-0013786-6, Trans. Amer. Math. Soc. 58 (1945), 44-76. (1945) Zbl0060.14102MR0013786DOI10.1090/S0002-9947-1945-0013786-6
  8. C. Jacob, Sur le problème de Dirichlet dans un domaine plan multiplement connexe et ses applications a l'Hydrodynamique, J. Math. Pures Appl. (9) 18 (1939), 363-383. (1939) MR0001692
  9. J. Král, The Fredholm radius of an operator in potential theory, Czechoslovak Math. J. 15 (1965), 454-473, 565-588. (1965) MR0190363
  10. J. Král, 10.1007/BFb0091035, Lecture Notes in Math. Vol. 823, Springer-Verlag, 1980. (1980) MR0590244DOI10.1007/BFb0091035
  11. J. Král, Boundary regularity and normal derivatives of logarithmic potentials, Proc. Roy. Soc. Edinburgh Sect. A 106 (1987), 241-258. (1987) MR0906210
  12. J. Král, 10.2307/1994580, Trans. Amer. Math. Soc. 125 (1966), 511-547. (1966) MR0209503DOI10.2307/1994580
  13. J. Král D. Medková, Angular limits of the integrals of the Cauchy type, Preprint 47/1994, MU AV ČR. (1994) MR1479307
  14. J. Král D. Medková, Angular limits of double layer potentials, Czechoslovak Math. J. 45 (1995), 267-292. (1995) MR1331464
  15. V. G. Maz'ja, Boundary Integral Equations, Analysis IV, Encyclopaedia of Mathematical Sciences Vol. 27, Springer-Verlag, 1991. (1991) 
  16. N. I. Muschelišvili, On the fundamental mixed boundary value problem of logarithmic potential for multiply connected domains, Soobščenija Akad. Nauk Gruzinskoj SSR 2 (1941), no. 4, 309-313. (In Russian.) (1941) MR0010234
  17. S. Saks, Theory of the Integral, Dover Publications, New York. 1964. (1964) MR0167578
  18. J. M. Sloss, 10.2140/pjm.1974.52.247, Pacific J. Math. 52 (1974), 247-260. (1974) Zbl0243.30004MR0379807DOI10.2140/pjm.1974.52.247
  19. J. M. Sloss, 10.1007/BF02786808, J. Anal. Math. 28 (1975), 86-100. (1975) Zbl0325.31004DOI10.1007/BF02786808
  20. J. M. Sloss, 10.1137/0506088, SIAM J. Math. 6 (1975), 998-1006. (1975) Zbl0323.35025MR0437784DOI10.1137/0506088
  21. J. M. Sloss J. C. Bruch, 10.1137/0714067, SIAM J. Numer. Anal. 14, (1974), 994-1005. (1974) MR0478687DOI10.1137/0714067
  22. J. Veselý, On the mixed boundary problem of the theory of analytic functions, Časopis Pěst. Mat. 91 (1966), 320-336. (In Czech.) (1966) MR0206294
  23. W. L. Wendland, Boundary element methods and their asymptotic convergence, Lecture Notes of the CISM, Summer-School on Theoretical acoustic and numerical techniques, Int. Centre Mech. Sci., Udine (P. Filippi, ed.). Springer-Verlag, Wien, 1983, pp. 137-216. (1983) Zbl0618.65109MR0762829

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.