A -logarithmic analogue of Euler’s sine integral
Nobushige Kurokawa, Masato Wakayama (2005)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Nobushige Kurokawa, Masato Wakayama (2005)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
W. K. A. Loh (1996)
Acta Arithmetica
Similarity:
Xia Chen, Jay Rosen (2005)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
P. Ney, S. Wainger (1972)
Studia Mathematica
Similarity:
Mordechay B. Levin (2001)
Journal de théorie des nombres de Bordeaux
Similarity:
Let be integers, and let be a sequence of real numbers. In this paper we prove that the lower bound of the discrepancy of the double sequence coincides (up to a logarithmic factor) with the lower bound of the discrepancy of ordinary sequences in -dimensional unit cube . We also find a lower bound of the discrepancy (up to a logarithmic factor) of the sequence (Korobov’s problem).
C. Hooley (1963)
Acta Arithmetica
Similarity:
Catalina Calderón García, María José Zárate Azcuna (1990)
Extracta Mathematicae
Similarity:
D. Burgess (1971)
Acta Arithmetica
Similarity:
J. Mikusiński (1953)
Studia Mathematica
Similarity:
B. Srinivasan (1963)
Acta Arithmetica
Similarity: