A -logarithmic analogue of Euler’s sine integral
Nobushige Kurokawa, Masato Wakayama (2005)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Nobushige Kurokawa, Masato Wakayama (2005)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
W. K. A. Loh (1996)
Acta Arithmetica
Similarity:
Xia Chen, Jay Rosen (2005)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
P. Ney, S. Wainger (1972)
Studia Mathematica
Similarity:
Mordechay B. Levin (2001)
Journal de théorie des nombres de Bordeaux
Similarity:
Let be integers, and let be a sequence of real numbers. In this paper we prove that the lower bound of the discrepancy of the double sequence coincides (up to a logarithmic factor) with the lower bound of the discrepancy of ordinary sequences in -dimensional unit cube . We also find a lower bound of the discrepancy (up to a logarithmic factor) of the sequence (Korobov’s problem).
C. Hooley (1963)
Acta Arithmetica
Similarity:
Catalina Calderón García, María José Zárate Azcuna (1990)
Extracta Mathematicae
Similarity:
D. Burgess (1971)
Acta Arithmetica
Similarity:
J. Mikusiński (1953)
Studia Mathematica
Similarity:
B. Srinivasan (1963)
Acta Arithmetica
Similarity: