Displaying similar documents to “On ( σ , τ ) -derivations in prime rings”

On skew derivations as homomorphisms or anti-homomorphisms

Mohd Arif Raza, Nadeem ur Rehman, Shuliang Huang (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let R be a prime ring with center Z and I be a nonzero ideal of R . In this manuscript, we investigate the action of skew derivation ( δ , ϕ ) of R which acts as a homomorphism or an anti-homomorphism on I . Moreover, we provide an example for semiprime case.

Generalized derivations on Lie ideals in prime rings

Basudeb Dhara, Sukhendu Kar, Sachhidananda Mondal (2015)

Czechoslovak Mathematical Journal

Similarity:

Let R be a prime ring with its Utumi ring of quotients U and extended centroid C . Suppose that F is a generalized derivation of R and L is a noncentral Lie ideal of R such that F ( u ) [ F ( u ) , u ] n = 0 for all u L , where n 1 is a fixed integer. Then one of the following holds: ...

A note on linear derivations

Amit Patra (2024)

Czechoslovak Mathematical Journal

Similarity:

At first we prove some results on a general polynomial derivation using few results of linear derivation. Then we study the ring of constants of a linear derivation for some rings. We know that any linear derivation is a nonsimple derivation. In the last section we find the smallest integer w > 1 such that the polynomial ring in n variables is w -differentially simple, all w derivations are nonsimple and the w derivations set contains a linear derivation.

Posner's second theorem and annihilator conditions with generalized skew derivations

Vincenzo De Filippis, Feng Wei (2012)

Colloquium Mathematicae

Similarity:

Let be a prime ring of characteristic different from 2, r be its right Martindale quotient ring and be its extended centroid. Suppose that is a non-zero generalized skew derivation of and f(x₁,..., xₙ) is a non-central multilinear polynomial over with n non-commuting variables. If there exists a non-zero element a of such that a[ (f(r₁,..., rₙ)),f(r₁, ..., rₙ)] = 0 for all r₁, ..., rₙ ∈ , then one of the following holds: (a) there exists λ ∈ such that (x) = λx for all x ∈ ; (b) there...

On near-ring ideals with ( σ , τ ) -derivation

Öznur Golbaşi, Neşet Aydin (2007)

Archivum Mathematicum

Similarity:

Let N be a 3 -prime left near-ring with multiplicative center Z , a ( σ , τ ) -derivation D on N is defined to be an additive endomorphism satisfying the product rule D ( x y ) = τ ( x ) D ( y ) + D ( x ) σ ( y ) for all x , y N , where σ and τ are automorphisms of N . A nonempty subset U of N will be called a semigroup right ideal (resp. semigroup left ideal) if U N U (resp. N U U ) and if U is both a semigroup right ideal and a semigroup left ideal, it be called a semigroup ideal. We prove the following results: Let D be a ( σ , τ ) -derivation...