Generalized derivations on Lie ideals in prime rings

Basudeb Dhara; Sukhendu Kar; Sachhidananda Mondal

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 1, page 179-190
  • ISSN: 0011-4642

Abstract

top
Let R be a prime ring with its Utumi ring of quotients U and extended centroid C . Suppose that F is a generalized derivation of R and L is a noncentral Lie ideal of R such that F ( u ) [ F ( u ) , u ] n = 0 for all u L , where n 1 is a fixed integer. Then one of the following holds:

there exists λ C \lambda \in C such that F ( x ) = λ x F(x)=\lambda x for all x R x\in R ;

R R satisfies s 4 s_4 and F ( x ) = a x + x b F(x)=ax+xb for all x R x\in R , with a , b U a, b\in U and a - b C a-b\in C ;

char ( R ) = 2 \mathop {\rm char}(R)=2 and R R satisfies s 4 s_4 .

As an application we also obtain some range inclusion results of continuous generalized derivations on Banach algebras.

How to cite

top

Dhara, Basudeb, Kar, Sukhendu, and Mondal, Sachhidananda. "Generalized derivations on Lie ideals in prime rings." Czechoslovak Mathematical Journal 65.1 (2015): 179-190. <http://eudml.org/doc/270040>.

@article{Dhara2015,
abstract = {Let $R$ be a prime ring with its Utumi ring of quotients $U$ and extended centroid $C$. Suppose that $F$ is a generalized derivation of $R$ and $L$ is a noncentral Lie ideal of $R$ such that $F(u)[F(u),u]^n=0$ for all $u \in L$, where $n\ge 1$ is a fixed integer. Then one of the following holds: As an application we also obtain some range inclusion results of continuous generalized derivations on Banach algebras.},
author = {Dhara, Basudeb, Kar, Sukhendu, Mondal, Sachhidananda},
journal = {Czechoslovak Mathematical Journal},
keywords = {prime ring; derivation; generalized derivation; extended centroid; Utumi quotient ring; Lie ideal; Banach algebra; generalized derivations; Lie ideals; prime rings; Banach algebras; extended centroid; Utumi quotient rings},
language = {eng},
number = {1},
pages = {179-190},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized derivations on Lie ideals in prime rings},
url = {http://eudml.org/doc/270040},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Dhara, Basudeb
AU - Kar, Sukhendu
AU - Mondal, Sachhidananda
TI - Generalized derivations on Lie ideals in prime rings
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 179
EP - 190
AB - Let $R$ be a prime ring with its Utumi ring of quotients $U$ and extended centroid $C$. Suppose that $F$ is a generalized derivation of $R$ and $L$ is a noncentral Lie ideal of $R$ such that $F(u)[F(u),u]^n=0$ for all $u \in L$, where $n\ge 1$ is a fixed integer. Then one of the following holds: As an application we also obtain some range inclusion results of continuous generalized derivations on Banach algebras.
LA - eng
KW - prime ring; derivation; generalized derivation; extended centroid; Utumi quotient ring; Lie ideal; Banach algebra; generalized derivations; Lie ideals; prime rings; Banach algebras; extended centroid; Utumi quotient rings
UR - http://eudml.org/doc/270040
ER -

References

top
  1. Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V., Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics 196 Marcel Dekker, New York (1996). (1996) MR1368853
  2. Bergen, J., Herstein, I. N., Kerr, J. W., 10.1016/0021-8693(81)90120-4, J. Algebra 71 (1981), 259-267. (1981) Zbl0463.16023MR0627439DOI10.1016/0021-8693(81)90120-4
  3. Brešar, M., Vukman, J., 10.1090/S0002-9939-1990-1028284-3, Proc. Am. Math. Soc. 110 (1990), 7-16. (1990) Zbl0703.16020MR1028284DOI10.1090/S0002-9939-1990-1028284-3
  4. Carini, L., Filippis, V. De, 10.2140/pjm.2000.193.269, Pac. J. Math. 193 (2000), 269-278. (2000) Zbl1009.16034MR1755818DOI10.2140/pjm.2000.193.269
  5. Chuang, C.-L., 10.1090/S0002-9939-1988-0947646-4, Proc. Am. Math. Soc. 103 (1988), 723-728. (1988) Zbl0656.16006MR0947646DOI10.1090/S0002-9939-1988-0947646-4
  6. Filippis, V. De, Generalized derivations and commutators with nilpotent values on Lie ideals, Tamsui Oxf. J. Math. Sci. 22 (2006), 167-175. (2006) Zbl1133.16022MR2285443
  7. Filippis, V. de, Scudo, G., El-Sayiad, M. S. Tammam, 10.1007/s10587-012-0039-0, Czech. Math. J. 62 (2012), 453-468. (2012) MR2990186DOI10.1007/s10587-012-0039-0
  8. Dhara, B., 10.1080/00927870802226213, Commun. Algebra 37 (2009), 2159-2167. (2009) Zbl1181.16035MR2531892DOI10.1080/00927870802226213
  9. Erickson, T. S., III, W. S. Martindale, Osborn, J. M., 10.2140/pjm.1975.60.49, Pac. J. Math. 60 (1975), 49-63. (1975) MR0382379DOI10.2140/pjm.1975.60.49
  10. Johnson, B. E., Sinclair, A. M., 10.2307/2373290, Am. J. Math. 90 (1968), 1067-1073. (1968) Zbl0179.18103MR0239419DOI10.2307/2373290
  11. Jacobson, N., Structure of Rings, American Mathematical Society Colloquium Publications 37 American Mathematical Society, Providence (1964). (1964) MR0222106
  12. Kharchenko, V. K., Differential identities of prime rings, Algebra Logic 17 (1979), 155-168 translation from Algebra i Logika Russian 17 (1978), 220-238, 242-243. (1978) MR0541758
  13. Kim, B.-D., 10.4134/CKMS.2013.28.3.535, Commun. Korean Math. Soc. 28 (2013), 535-558. (2013) Zbl1281.47021MR3085603DOI10.4134/CKMS.2013.28.3.535
  14. Kim, B.-D., 10.4134/CKMS.2002.17.4.607, Commun. Korean Math. Soc. 17 (2002), 607-618. (2002) Zbl1101.46317MR1971004DOI10.4134/CKMS.2002.17.4.607
  15. Kim, B., 10.1007/s101149900020, Acta Math. Sin., Engl. Ser. 16 (2000), 21-28. (2000) Zbl0973.16020MR1760520DOI10.1007/s101149900020
  16. Lanski, C., 10.2140/pjm.1988.134.275, Pac. J. Math. 134 (1988), 275-297. (1988) Zbl0614.16028MR0961236DOI10.2140/pjm.1988.134.275
  17. Lanski, C., Montgomery, S., 10.2140/pjm.1972.42.117, Pac. J. Math. 42 (1972), 117-136. (1972) Zbl0243.16018MR0323839DOI10.2140/pjm.1972.42.117
  18. Lee, P. H., Lee, T. K., Lie ideals of prime rings with derivations, Bull. Inst. Math., Acad. Sin. 11 (1983), 75-80. (1983) Zbl0515.16018MR0718903
  19. Lee, T.-K., 10.1080/00927879908826682, Commun. Algebra 27 (1999), 4057-4073. (1999) Zbl0946.16026MR1700189DOI10.1080/00927879908826682
  20. Lee, T. K., Semiprime rings with differential identities, Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38. (1992) Zbl0769.16017MR1166215
  21. III, W. S. Martindale, 10.1016/0021-8693(69)90029-5, J. Algebra 12 (1969), 576-584. (1969) MR0238897DOI10.1016/0021-8693(69)90029-5
  22. Mathieu, M., 10.4153/CMB-1989-072-4, Can. Math. Bull. 32 (1989), 490-497. (1989) MR1019418DOI10.4153/CMB-1989-072-4
  23. Mathieu, M., Murphy, G. J., 10.1007/BF01246745, Arch. Math. 57 (1991), 469-474. (1991) Zbl0714.46038MR1129522DOI10.1007/BF01246745
  24. Park, K.-H., 10.4134/BKMS.2005.42.4.671, Bull. Korean Math. Soc. 42 (2005), 671-678. (2005) Zbl1105.16031MR2181155DOI10.4134/BKMS.2005.42.4.671
  25. Posner, E. C., 10.1090/S0002-9939-1957-0095863-0, Proc. Am. Math. Soc. 8 (1957), 1093-1100. (1957) MR0095863DOI10.1090/S0002-9939-1957-0095863-0
  26. Sinclair, A. M., 10.1090/S0002-9939-1969-0233207-X, Proc. Am. Math. Soc. 20 (1969), 166-170. (1969) Zbl0164.44603MR0233207DOI10.1090/S0002-9939-1969-0233207-X
  27. Singer, I. M., Wermer, J., 10.1007/BF01362370, Math. Ann. 129 (1955), 260-264. (1955) Zbl0067.35101MR0070061DOI10.1007/BF01362370
  28. Thomas, M. P., The image of a derivation is contained in the radical, Ann. Math. (2) 128 (1988), 435-460. (1988) Zbl0681.47016MR0970607
  29. Vukman, J., 10.1090/S0002-9939-1992-1072093-8, Proc. Am. Math. Soc. 116 (1992), 877-884. (1992) Zbl0792.16034MR1072093DOI10.1090/S0002-9939-1992-1072093-8
  30. Yood, B., Continuous homomorphisms and derivations on Banach algebras, Proceedings of the Conference on Banach Algebras and Several Complex Variables, New Haven, Conn., 1983 Contemp. Math. 32 Amer. Math. Soc., Providence (1984), 279-284 F. Greenleaf et al. (1984) Zbl0569.46025MR0769517

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.