Generalized derivations on Lie ideals in prime rings
Basudeb Dhara; Sukhendu Kar; Sachhidananda Mondal
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 1, page 179-190
- ISSN: 0011-4642
Access Full Article
topAbstract
top-
there exists
\lambda \in C F(x)=\lambda x x\in R -
R s_4 F(x)=ax+xb x\in R a, b\in U a-b\in C -
\mathop {\rm char}(R)=2 R s_4
How to cite
topDhara, Basudeb, Kar, Sukhendu, and Mondal, Sachhidananda. "Generalized derivations on Lie ideals in prime rings." Czechoslovak Mathematical Journal 65.1 (2015): 179-190. <http://eudml.org/doc/270040>.
@article{Dhara2015,
abstract = {Let $R$ be a prime ring with its Utumi ring of quotients $U$ and extended centroid $C$. Suppose that $F$ is a generalized derivation of $R$ and $L$ is a noncentral Lie ideal of $R$ such that $F(u)[F(u),u]^n=0$ for all $u \in L$, where $n\ge 1$ is a fixed integer. Then one of the following holds:
As an application we also obtain some range inclusion results of continuous generalized derivations on Banach algebras.},
author = {Dhara, Basudeb, Kar, Sukhendu, Mondal, Sachhidananda},
journal = {Czechoslovak Mathematical Journal},
keywords = {prime ring; derivation; generalized derivation; extended centroid; Utumi quotient ring; Lie ideal; Banach algebra; generalized derivations; Lie ideals; prime rings; Banach algebras; extended centroid; Utumi quotient rings},
language = {eng},
number = {1},
pages = {179-190},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized derivations on Lie ideals in prime rings},
url = {http://eudml.org/doc/270040},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Dhara, Basudeb
AU - Kar, Sukhendu
AU - Mondal, Sachhidananda
TI - Generalized derivations on Lie ideals in prime rings
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 179
EP - 190
AB - Let $R$ be a prime ring with its Utumi ring of quotients $U$ and extended centroid $C$. Suppose that $F$ is a generalized derivation of $R$ and $L$ is a noncentral Lie ideal of $R$ such that $F(u)[F(u),u]^n=0$ for all $u \in L$, where $n\ge 1$ is a fixed integer. Then one of the following holds:
As an application we also obtain some range inclusion results of continuous generalized derivations on Banach algebras.
LA - eng
KW - prime ring; derivation; generalized derivation; extended centroid; Utumi quotient ring; Lie ideal; Banach algebra; generalized derivations; Lie ideals; prime rings; Banach algebras; extended centroid; Utumi quotient rings
UR - http://eudml.org/doc/270040
ER -
References
top- Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V., Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics 196 Marcel Dekker, New York (1996). (1996) MR1368853
- Bergen, J., Herstein, I. N., Kerr, J. W., 10.1016/0021-8693(81)90120-4, J. Algebra 71 (1981), 259-267. (1981) Zbl0463.16023MR0627439DOI10.1016/0021-8693(81)90120-4
- Brešar, M., Vukman, J., 10.1090/S0002-9939-1990-1028284-3, Proc. Am. Math. Soc. 110 (1990), 7-16. (1990) Zbl0703.16020MR1028284DOI10.1090/S0002-9939-1990-1028284-3
- Carini, L., Filippis, V. De, 10.2140/pjm.2000.193.269, Pac. J. Math. 193 (2000), 269-278. (2000) Zbl1009.16034MR1755818DOI10.2140/pjm.2000.193.269
- Chuang, C.-L., 10.1090/S0002-9939-1988-0947646-4, Proc. Am. Math. Soc. 103 (1988), 723-728. (1988) Zbl0656.16006MR0947646DOI10.1090/S0002-9939-1988-0947646-4
- Filippis, V. De, Generalized derivations and commutators with nilpotent values on Lie ideals, Tamsui Oxf. J. Math. Sci. 22 (2006), 167-175. (2006) Zbl1133.16022MR2285443
- Filippis, V. de, Scudo, G., El-Sayiad, M. S. Tammam, 10.1007/s10587-012-0039-0, Czech. Math. J. 62 (2012), 453-468. (2012) MR2990186DOI10.1007/s10587-012-0039-0
- Dhara, B., 10.1080/00927870802226213, Commun. Algebra 37 (2009), 2159-2167. (2009) Zbl1181.16035MR2531892DOI10.1080/00927870802226213
- Erickson, T. S., III, W. S. Martindale, Osborn, J. M., 10.2140/pjm.1975.60.49, Pac. J. Math. 60 (1975), 49-63. (1975) MR0382379DOI10.2140/pjm.1975.60.49
- Johnson, B. E., Sinclair, A. M., 10.2307/2373290, Am. J. Math. 90 (1968), 1067-1073. (1968) Zbl0179.18103MR0239419DOI10.2307/2373290
- Jacobson, N., Structure of Rings, American Mathematical Society Colloquium Publications 37 American Mathematical Society, Providence (1964). (1964) MR0222106
- Kharchenko, V. K., Differential identities of prime rings, Algebra Logic 17 (1979), 155-168 translation from Algebra i Logika Russian 17 (1978), 220-238, 242-243. (1978) MR0541758
- Kim, B.-D., 10.4134/CKMS.2013.28.3.535, Commun. Korean Math. Soc. 28 (2013), 535-558. (2013) Zbl1281.47021MR3085603DOI10.4134/CKMS.2013.28.3.535
- Kim, B.-D., 10.4134/CKMS.2002.17.4.607, Commun. Korean Math. Soc. 17 (2002), 607-618. (2002) Zbl1101.46317MR1971004DOI10.4134/CKMS.2002.17.4.607
- Kim, B., 10.1007/s101149900020, Acta Math. Sin., Engl. Ser. 16 (2000), 21-28. (2000) Zbl0973.16020MR1760520DOI10.1007/s101149900020
- Lanski, C., 10.2140/pjm.1988.134.275, Pac. J. Math. 134 (1988), 275-297. (1988) Zbl0614.16028MR0961236DOI10.2140/pjm.1988.134.275
- Lanski, C., Montgomery, S., 10.2140/pjm.1972.42.117, Pac. J. Math. 42 (1972), 117-136. (1972) Zbl0243.16018MR0323839DOI10.2140/pjm.1972.42.117
- Lee, P. H., Lee, T. K., Lie ideals of prime rings with derivations, Bull. Inst. Math., Acad. Sin. 11 (1983), 75-80. (1983) Zbl0515.16018MR0718903
- Lee, T.-K., 10.1080/00927879908826682, Commun. Algebra 27 (1999), 4057-4073. (1999) Zbl0946.16026MR1700189DOI10.1080/00927879908826682
- Lee, T. K., Semiprime rings with differential identities, Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38. (1992) Zbl0769.16017MR1166215
- III, W. S. Martindale, 10.1016/0021-8693(69)90029-5, J. Algebra 12 (1969), 576-584. (1969) MR0238897DOI10.1016/0021-8693(69)90029-5
- Mathieu, M., 10.4153/CMB-1989-072-4, Can. Math. Bull. 32 (1989), 490-497. (1989) MR1019418DOI10.4153/CMB-1989-072-4
- Mathieu, M., Murphy, G. J., 10.1007/BF01246745, Arch. Math. 57 (1991), 469-474. (1991) Zbl0714.46038MR1129522DOI10.1007/BF01246745
- Park, K.-H., 10.4134/BKMS.2005.42.4.671, Bull. Korean Math. Soc. 42 (2005), 671-678. (2005) Zbl1105.16031MR2181155DOI10.4134/BKMS.2005.42.4.671
- Posner, E. C., 10.1090/S0002-9939-1957-0095863-0, Proc. Am. Math. Soc. 8 (1957), 1093-1100. (1957) MR0095863DOI10.1090/S0002-9939-1957-0095863-0
- Sinclair, A. M., 10.1090/S0002-9939-1969-0233207-X, Proc. Am. Math. Soc. 20 (1969), 166-170. (1969) Zbl0164.44603MR0233207DOI10.1090/S0002-9939-1969-0233207-X
- Singer, I. M., Wermer, J., 10.1007/BF01362370, Math. Ann. 129 (1955), 260-264. (1955) Zbl0067.35101MR0070061DOI10.1007/BF01362370
- Thomas, M. P., The image of a derivation is contained in the radical, Ann. Math. (2) 128 (1988), 435-460. (1988) Zbl0681.47016MR0970607
- Vukman, J., 10.1090/S0002-9939-1992-1072093-8, Proc. Am. Math. Soc. 116 (1992), 877-884. (1992) Zbl0792.16034MR1072093DOI10.1090/S0002-9939-1992-1072093-8
- Yood, B., Continuous homomorphisms and derivations on Banach algebras, Proceedings of the Conference on Banach Algebras and Several Complex Variables, New Haven, Conn., 1983 Contemp. Math. 32 Amer. Math. Soc., Providence (1984), 279-284 F. Greenleaf et al. (1984) Zbl0569.46025MR0769517
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.