The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Products of Lindelöf T 2 -spaces are Lindelöf – in some models of ZF”

When is 𝐍 Lindelöf?

Horst Herrlich, George E. Strecker (1997)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Theorem. In ZF (i.e., Zermelo-Fraenkel set theory without the axiom of choice) the following conditions are equivalent: (1) is a Lindelöf space, (2) is a Lindelöf space, (3) is a Lindelöf space, (4) every topological space with a countable base is a Lindelöf space, (5) every subspace of is separable, (6) in , a point x is in the closure of a set A iff there exists a sequence in A that converges to x , (7) a function f : is continuous at a point x iff f is sequentially continuous...

Convergence in compacta and linear Lindelöfness

Aleksander V. Arhangel'skii, Raushan Z. Buzyakova (1998)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X be a compact Hausdorff space with a point x such that X { x } is linearly Lindelöf. Is then X first countable at x ? What if this is true for every x in X ? We consider these and some related questions, and obtain partial answers; in particular, we prove that the answer to the second question is “yes” when X is, in addition, ω -monolithic. We also prove that if X is compact, Hausdorff, and X { x } is strongly discretely Lindelöf, for every x in X , then X is first countable. An example of linearly...