Displaying similar documents to “On the diophantine equation x 2 = y p + 2 k z p

Diophantine m -tuples and elliptic curves

Andrej Dujella (2001)

Journal de théorie des nombres de Bordeaux

Similarity:

A Diophantine m -tuple is a set of m positive integers such that the product of any two of them is one less than a perfect square. In this paper we study some properties of elliptic curves of the form y 2 = ( a x + 1 ) ( b x + 1 ) ( c x + 1 ) , where { a , b , c } , is a Diophantine triple. In particular, we consider the elliptic curve E k defined by the equation y 2 = ( F 2 k x + 1 ) ( F 2 k + 2 x + 1 ) ( F 2 k + 4 x + 1 ) , where k 2 and F n , denotes the n -th Fibonacci number. We prove that if the rank of E k ( 𝐐 ) is equal to one, or k 50 , then all integer points on E k are given by ( x , y ) { ( 0 ± 1 ) , ( 4 F 2 k + 1 F 2 k + 2 F 2 k + 3 ± 2 F 2 k + 1 F 2 k + 2 - 1 × 2 F 2 k + 2 2 + 1 2 F 2 k + 2 F 2 k + 3 + 1 } .

Cubic forms, powers of primes and the Kraus method

Andrzej Dąbrowski, Tomasz Jędrzejak, Karolina Krawciów (2012)

Colloquium Mathematicae

Similarity:

We consider the Diophantine equation ( x + y ) ( x ² + B x y + y ² ) = D z p , where B, D are integers (B ≠ ±2, D ≠ 0) and p is a prime >5. We give Kraus type criteria of nonsolvability for this equation (explicitly, for many B and D) in terms of Galois representations and modular forms. We apply these criteria to numerous equations (with B = 0, 1, 3, 4, 5, 6, specific D’s, and p ∈ (10,10⁶)). In the last section we discuss reductions of the above Diophantine equations to those of signature (p,p,2).

The integral points on elliptic curves y 2 = x 3 + ( 36 n 2 - 9 ) x - 2 ( 36 n 2 - 5 )

Hai Yang, Ruiqin Fu (2013)

Czechoslovak Mathematical Journal

Similarity:

Let n be a positive odd integer. In this paper, combining some properties of quadratic and quartic diophantine equations with elementary analysis, we prove that if n > 1 and both 6 n 2 - 1 and 12 n 2 + 1 are odd primes, then the general elliptic curve y 2 = x 3 + ( 36 n 2 - 9 ) x - 2 ( 36 n 2 - 5 ) has only the integral point ( x , y ) = ( 2 , 0 ) . By this result we can get that the above elliptic curve has only the trivial integral point for n = 3 , 13 , 17 etc. Thus it can be seen that the elliptic curve y 2 = x 3 + 27 x - 62 really is an unusual elliptic curve which has large integral points. ...

On the Diophantine equation q n - 1 q - 1 = y

Amir Khosravi, Behrooz Khosravi (2003)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

There exist many results about the Diophantine equation ( q n - 1 ) / ( q - 1 ) = y m , where m 2 and n 3 . In this paper, we suppose that m = 1 , n is an odd integer and q a power of a prime number. Also let y be an integer such that the number of prime divisors of y - 1 is less than or equal to 3 . Then we solve completely the Diophantine equation ( q n - 1 ) / ( q - 1 ) = y for infinitely many values of y . This result finds frequent applications in the theory of finite groups.

A ternary Diophantine inequality over primes

Roger Baker, Andreas Weingartner (2014)

Acta Arithmetica

Similarity:

Let 1 < c < 10/9. For large real numbers R > 0, and a small constant η > 0, the inequality | p c + p c + p c - R | < R - η holds for many prime triples. This improves work of Kumchev [Acta Arith. 89 (1999)].

The Diophantine equation D x ² + 2 2 m + 1 = y

J. H. E. Cohn (2003)

Colloquium Mathematicae

Similarity:

It is shown that for a given squarefree positive integer D, the equation of the title has no solutions in integers x > 0, m > 0, n ≥ 3 and y odd, nor unless D ≡ 14 (mod 16) in integers x > 0, m = 0, n ≥ 3, y > 0, provided in each case that n does not divide the class number of the imaginary quadratic field containing √(-2D), except for a small number of (stated) exceptions.

The method of infinite ascent applied on A 4 ± n B 3 = C 2

Susil Kumar Jena (2013)

Czechoslovak Mathematical Journal

Similarity:

Each of the Diophantine equations A 4 ± n B 3 = C 2 has an infinite number of integral solutions ( A , B , C ) for any positive integer n . In this paper, we will show how the method of infinite ascent could be applied to generate these solutions. We will investigate the conditions when A , B and C are pair-wise co-prime. As a side result of this investigation, we will show a method of generating an infinite number of co-prime integral solutions ( A , B , C ) of the Diophantine equation a A 3 + c B 3 = C 2 for any co-prime integer pair ( a , c ) . ...

On a ternary Diophantine problem with mixed powers of primes

Alessandro Languasco, Alessandro Zaccagnini (2013)

Acta Arithmetica

Similarity:

Let 1 < k < 33/29. We prove that if λ₁, λ₂ and λ₃ are non-zero real numbers, not all of the same sign and such that λ₁/λ₂ is irrational, and ϖ is any real number, then for any ε > 0 the inequality | λ p + λ p ² + λ p k + ϖ | ( m a x j p j ) - ( 33 - 29 k ) / ( 72 k ) + ε has infinitely many solutions in prime variables p₁, p₂, p₃.