The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Totally non-remote points in β

Compacta are maximally G δ -resolvable

István Juhász, Zoltán Szentmiklóssy (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is well-known that compacta (i.e. compact Hausdorff spaces) are maximally resolvable, that is every compactum X contains Δ ( X ) many pairwise disjoint dense subsets, where Δ ( X ) denotes the minimum size of a non-empty open set in X . The aim of this note is to prove the following analogous result: Every compactum X contains Δ δ ( X ) many pairwise disjoint G δ -dense subsets, where Δ δ ( X ) denotes the minimum size of a non-empty G δ set in X .

A poset of topologies on the set of real numbers

Vitalij A. Chatyrko, Yasunao Hattori (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

On the set of real numbers we consider a poset 𝒫 τ ( ) (by inclusion) of topologies τ ( A ) , where A , such that A 1 A 2 iff τ ( A 1 ) τ ( A 2 ) . The poset has the minimal element τ ( ) , the Euclidean topology, and the maximal element τ ( ) , the Sorgenfrey topology. We are interested when two topologies τ 1 and τ 2 (especially, for τ 2 = τ ( ) ) from the poset define homeomorphic spaces ( , τ 1 ) and ( , τ 2 ) . In particular, we prove that for a closed subset A of the space ( , τ ( A ) ) is homeomorphic to the Sorgenfrey line ( , τ ( ) ) iff A is countable. We study also common...

An independency result in connectification theory

Alessandro Fedeli, Attilio Le Donne (1999)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space is called connectifiable if it can be densely embedded in a connected Hausdorff space. Let ψ be the following statement: “a perfect T 3 -space X with no more than 2 𝔠 clopen subsets is connectifiable if and only if no proper nonempty clopen subset of X is feebly compact". In this note we show that neither ψ nor ¬ ψ is provable in ZFC.