The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Ideal-theoretic characterizations of valuation and Prüfer monoids”

The catenary degree of Krull monoids I

Alfred Geroldinger, David J. Grynkiewicz, Wolfgang A. Schmid (2011)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let H be a Krull monoid with finite class group G such that every class contains a prime divisor (for example, a ring of integers in an algebraic number field or a holomorphy ring in an algebraic function field). The catenary degree c ( H ) of H is the smallest integer N with the following property: for each a H and each two factorizations z , z of a , there exist factorizations z = z 0 , ... , z k = z of a such that, for each i [ 1 , k ] , z i arises from z i - 1 by replacing at most N atoms from z i - 1 by at most N new atoms. Under a very...

Factorization in Krull monoids with infinite class group

Florian Kainrath (1999)

Colloquium Mathematicae

Similarity:

Let H be a Krull monoid with infinite class group and such that each divisor class of H contains a prime divisor. We show that for each finite set L of integers ≥2 there exists some h ∈ H such that the following are equivalent: (i) h has a representation h = u 1 · . . . · u k for some irreducible elements u i , (ii) k ∈ L.

On strongly ( P ) -cyclic acts

Akbar Golchin, Parisa Rezaei, Hossein Mohammadzadeh (2009)

Czechoslovak Mathematical Journal

Similarity:

By a regular act we mean an act such that all its cyclic subacts are projective. In this paper we introduce strong ( P ) -cyclic property of acts over monoids which is an extension of regularity and give a classification of monoids by this property of their right (Rees factor) acts.