Displaying similar documents to “Fixed point theorems for nonexpansive mappings in modular spaces”

The second moment of quadratic twists of modular L-functions

K. Soundararajan, Matthew P. Young (2010)

Journal of the European Mathematical Society

Similarity:

We study the second moment of the central values of quadratic twists of a modular L -function. Unconditionally, we obtain a lower bound which matches the conjectured asymptotic formula, while on GRH we prove the asymptotic formula itself.

Overconvergent modular forms

Vincent Pilloni (2013)

Annales de l’institut Fourier

Similarity:

We give a geometric definition of overconvergent modular forms of any p -adic weight. As an application, we reprove Coleman’s theory of p -adic families of modular forms and reconstruct the eigencurve of Coleman and Mazur without using the Eisenstein family.

Bounds on sup-norms of half-integral weight modular forms

Eren Mehmet Kıral (2014)

Acta Arithmetica

Similarity:

Bounding sup-norms of modular forms in terms of the level has been the focus of much recent study. In this work the sup-norm of a half-integral weight cusp form is bounded in terms of the level: we prove that | | y κ / 2 f ̃ | | ε , κ N 1 / 2 - 1 / 18 + ε | | y κ / 2 f ̃ | | L 2 for a modular form f̃ of level 4N and weight κ, a half-integer.

Gauss–Manin connections for p -adic families of nearly overconvergent modular forms

Robert Harron, Liang Xiao (2014)

Annales de l’institut Fourier

Similarity:

We interpolate the Gauss–Manin connection in p -adic families of nearly overconvergent modular forms. This gives a family of Maass–Shimura type differential operators from the space of nearly overconvergent modular forms of type r to the space of nearly overconvergent modular forms of type r + 1 with p -adic weight shifted by 2 . Our construction is purely geometric, using Andreatta–Iovita–Stevens and Pilloni’s geometric construction of eigencurves, and should thus generalize to higher rank...

Measures of noncompactness in locally convex spaces and fixed point theory for the sum of two operators on unbounded convex sets

Józef Banaś, Afif Ben Amar (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we prove a collection of new fixed point theorems for operators of the form T + S on an unbounded closed convex subset of a Hausdorff topological vector space ( E , Γ ) . We also introduce the concept of demi- τ -compact operator and τ -semi-closed operator at the origin. Moreover, a series of new fixed point theorems of Krasnosel’skii type is proved for the sum T + S of two operators, where T is τ -sequentially continuous and τ -compact while S is τ -sequentially continuous (and Φ τ -condensing,...

Shintani and Shimura lifts of cusp forms on certain arithmetic groups and their applications

SoYoung Choi, Chang Heon Kim (2017)

Open Mathematics

Similarity:

For an odd and squarefree level N, Kohnen proved that there is a canonically defined subspace [...] S κ + 1 2 n e w ( N ) ⊂ S κ + 1 2 ( N ) , and S κ + 1 2 n e w ( N ) and S 2 k n e w ( N ) S κ + 1 2 n e w ( N ) S κ + 1 2 ( N ) , and S κ + 1 2 n e w ( N ) and S 2 k n e w ( N ) are isomorphic as modules over the Hecke algebra. Later he gave a formula for the product [...] a g ( m ) a g ( n ) ¯ a g ( m ) a g ( n ) ¯ of two arbitrary Fourier coefficients of a Hecke eigenform g of halfintegral weight and of level 4N in terms of certain cycle integrals of the corresponding form f of integral...

Approximation results for nonlinear integral operators in modular spaces and applications

Ilaria Mantellini, Gianluca Vinti (2003)

Annales Polonici Mathematici

Similarity:

We obtain modular convergence theorems in modular spaces for nets of operators of the form ( T w f ) ( s ) = H K w ( s - h w ( t ) , f ( h w ( t ) ) ) d μ H ( t ) , w > 0, s ∈ G, where G and H are topological groups and h w w > 0 is a family of homeomorphisms h w : H h w ( H ) G . Such operators contain, in particular, a nonlinear version of the generalized sampling operators, which have many applications in the theory of signal processing.

Local Indecomposability of Hilbert Modular Galois Representations

Bin Zhao (2014)

Annales de l’institut Fourier

Similarity:

We prove the indecomposability of the Galois representation restricted to the p -decomposition group attached to a non CM nearly p -ordinary weight two Hilbert modular form over a totally real field F under the assumption that either the degree of F over is odd or the automorphic representation attached to the Hilbert modular form is square integrable at some finite place of F .

On the Euler Function on Differences Between the Coordinates of Points on Modular Hyperbolas

Igor E. Shparlinski (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

For a prime p > 2, an integer a with gcd(a,p) = 1 and real 1 ≤ X,Y < p, we consider the set of points on the modular hyperbola a , p ( X , Y ) = ( x , y ) : x y a ( m o d p ) , 1 x X , 1 y Y . We give asymptotic formulas for the average values ( x , y ) a , p ( X , Y ) x y * φ ( | x - y | ) / | x - y | and ( x , y ) a , p ( X , X ) x y * φ ( | x - y | ) with the Euler function φ(k) on the differences between the components of points of a , p ( X , Y ) .