Displaying similar documents to “On conditions for the boundedness of the Weyl fractional integral on weighted $L^p$ spaces”

Weighted inequalities for integral operators with some homogeneous kernels

María Silvina Riveros, Marta Urciuolo (2005)

Czechoslovak Mathematical Journal

Similarity:

In this paper we study integral operators of the form T f ( x ) = | x - a 1 y | - α 1 | x - a m y | - α m f ( y ) d y , α 1 + + α m = n . We obtain the L p ( w ) boundedness for them, and a weighted ( 1 , 1 ) inequality for weights w in A p satisfying that there exists c 1 such that w ( a i x ) c w ( x ) for a.e. x n , 1 i m . Moreover, we prove T f B M O c f for a wide family of functions f L ( n ) .

Cauchy problem for the complex Ginzburg-Landau type Equation with L p -initial data

Daisuke Shimotsuma, Tomomi Yokota, Kentarou Yoshii (2014)

Mathematica Bohemica

Similarity:

This paper gives the local existence of mild solutions to the Cauchy problem for the complex Ginzburg-Landau type equation u t - ( λ + i α ) Δ u + ( κ + i β ) | u | q - 1 u - γ u = 0 in N × ( 0 , ) with L p -initial data u 0 in the subcritical case ( 1 q < 1 + 2 p / N ), where u is a complex-valued unknown function, α , β , γ , κ , λ > 0 , p > 1 , i = - 1 and N . The proof is based on the L p - L q estimates of the linear semigroup { exp ( t ( λ + i α ) Δ ) } and usual fixed-point argument.

Boundedness of one-sided fractional integrals in the one-sided Calderón-Hardy spaces

Alejandra Perini (2011)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we study the mapping properties of the one-sided fractional integrals in the Calderón-Hardy spaces q , α p , + ( ω ) for 0 < p 1 , 0 < α < and 1 < q < . Specifically, we show that, for suitable values of p , q , γ , α and s , if ω A s + (Sawyer’s classes of weights) then the one-sided fractional integral I γ + can be extended to a bounded operator from q , α p , + ( ω ) to q , α + γ p , + ( ω ) . The result is a consequence of the pointwise inequality N q , α + γ + I γ + F ; x C α , γ N q , α + F ; x , where N q , α + ( F ; x ) denotes the Calderón maximal function.