Displaying similar documents to “On multiplication groups of left conjugacy closed loops”

A class of Bol loops with a subgroup of index two

Petr Vojtěchovský (2004)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a finite group and C 2 the cyclic group of order 2 . Consider the 8 multiplicative operations ( x , y ) ( x i y j ) k , where i , j , k { - 1 , 1 } . Define a new multiplication on G × C 2 by assigning one of the above 8 multiplications to each quarter ( G × { i } ) × ( G × { j } ) , for i , j C 2 . We describe all situations in which the resulting quasigroup is a Bol loop. This paper also corrects an error in P. Vojtěchovsk’y: On the uniqueness of loops M ( G , 2 ) .

On the uniqueness of loops M ( G , 2 )

Petr Vojtěchovský (2003)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a finite group and C 2 the cyclic group of order 2. Consider the 8 multiplicative operations ( x , y ) ( x i y j ) k , where i , j , k { - 1 , 1 } . Define a new multiplication on G × C 2 by assigning one of the above 8 multiplications to each quarter ( G × { i } ) × ( G × { j } ) , for i , j C 2 . If the resulting quasigroup is a Bol loop, it is Moufang. When G is nonabelian then exactly four assignments yield Moufang loops that are not associative; all (anti)isomorphic, known as loops M ( G , 2 ) .