Displaying similar documents to “Differential calculus on almost commutative algebras and applications to the quantum hyperplane”

On the eigenvalues of a Robin problem with a large parameter

Alexey Filinovskiy (2014)

Mathematica Bohemica

Similarity:

We consider the Robin eigenvalue problem Δ u + λ u = 0 in Ω , u / ν + α u = 0 on Ω where Ω n , n 2 is a bounded domain and α is a real parameter. We investigate the behavior of the eigenvalues λ k ( α ) of this problem as functions of the parameter α . We analyze the monotonicity and convexity properties of the eigenvalues and give a variational proof of the formula for the derivative λ 1 ' ( α ) . Assuming that the boundary Ω is of class C 2 we obtain estimates to the difference λ k D - λ k ( α ) between the k -th eigenvalue of the Laplace operator with...

Best approximations and porous sets

Simeon Reich, Alexander J. Zaslavski (2003)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let D be a nonempty compact subset of a Banach space X and denote by S ( X ) the family of all nonempty bounded closed convex subsets of X . We endow S ( X ) with the Hausdorff metric and show that there exists a set S ( X ) such that its complement S ( X ) is σ -porous and such that for each A and each x ˜ D , the set of solutions of the best approximation problem x ˜ - z min , z A , is nonempty and compact, and each minimizing sequence has a convergent subsequence.

Non-compact perturbations of m -accretive operators in general Banach spaces

Mieczysław Cichoń (1992)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we deal with the Cauchy problem for differential inclusions governed by m -accretive operators in general Banach spaces. We are interested in finding the sufficient conditions for the existence of integral solutions of the problem x ' ( t ) - A x ( t ) + f ( t , x ( t ) ) , x ( 0 ) = x 0 , where A is an m -accretive operator, and f is a continuous, but non-compact perturbation, satisfying some additional conditions.