The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Extending the structural homomorphism of LCC loops”

A class of Bol loops with a subgroup of index two

Petr Vojtěchovský (2004)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a finite group and C 2 the cyclic group of order 2 . Consider the 8 multiplicative operations ( x , y ) ( x i y j ) k , where i , j , k { - 1 , 1 } . Define a new multiplication on G × C 2 by assigning one of the above 8 multiplications to each quarter ( G × { i } ) × ( G × { j } ) , for i , j C 2 . We describe all situations in which the resulting quasigroup is a Bol loop. This paper also corrects an error in P. Vojtěchovsk’y: On the uniqueness of loops M ( G , 2 ) .

On multiplication groups of left conjugacy closed loops

Aleš Drápal (2004)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A loop Q is said to be left conjugacy closed (LCC) if the set { L x ; x Q } is closed under conjugation. Let Q be such a loop, let and be the left and right multiplication groups of Q , respectively, and let Inn Q be its inner mapping group. Then there exists a homomorphism Inn Q determined by L x R x - 1 L x , and the orbits of [ , ] coincide with the cosets of A ( Q ) , the associator subloop of Q . All LCC loops of prime order are abelian groups.

On finite commutative loops which are centrally nilpotent

Emma Leppälä, Markku Niemenmaa (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let Q be a finite commutative loop and let the inner mapping group I ( Q ) C p n × C p n , where p is an odd prime number and n 1 . We show that Q is centrally nilpotent of class two.

On the uniqueness of loops M ( G , 2 )

Petr Vojtěchovský (2003)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a finite group and C 2 the cyclic group of order 2. Consider the 8 multiplicative operations ( x , y ) ( x i y j ) k , where i , j , k { - 1 , 1 } . Define a new multiplication on G × C 2 by assigning one of the above 8 multiplications to each quarter ( G × { i } ) × ( G × { j } ) , for i , j C 2 . If the resulting quasigroup is a Bol loop, it is Moufang. When G is nonabelian then exactly four assignments yield Moufang loops that are not associative; all (anti)isomorphic, known as loops M ( G , 2 ) .