Displaying similar documents to “On direct sums of B ( 1 ) -groups – II”

On direct sums of ( 1 ) -groups

Claudia Metelli (1993)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A necessary and sufficient condition is given for the direct sum of two ( 1 ) -groups to be (quasi-isomorphic to) a ( 1 ) -group. A ( 1 ) -group is a torsionfree Abelian group that can be realized as the quotient of a finite direct sum of rank 1 groups modulo a pure subgroup of rank 1.

On Butler B ( 2 ) -groups decomposing over two base elements

Clorinda de Vivo, Claudia Metelli (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A B ( 2 ) -group is a sum of a finite number of torsionfree Abelian groups of rank 1 , subject to two independent linear relations. We complete here the study of direct decompositions over two base elements, determining the cases where the relations play an essential role.

Butler groups splitting over a base element

Clorinda De Vivo, Claudia Metelli (2007)

Colloquium Mathematicae

Similarity:

We characterize a particular kind of decomposition of a Butler group that is the general case for Butler B(1)-groups; and exhibit a decomposition of a B(2)-group which is not of that kind.

Compact Abelian groups and extensions of Haar measures

A. Hulanicki

Similarity:

ContentsIntroduction.................................................................................................................... 31. Preliminaries (topology measure).................................................................... 32. Problems and the theorem.................................................................................... 73. Preliminaries (abstract groups, Cartesian products)....................................... 94. Preliminaries (automorphisms, duality...

On a question of M. Conder

M. Chiara Tamburini, Paola Zucca (2000)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We show that the special linear group S L 3 , Z , over the integers, is not 2 , 3 -generated. This gives a negative answer to a question of M. Conder.