Almost powers in the Lucas sequence

Yann Bugeaud[1]; Florian Luca[2]; Maurice Mignotte[1]; Samir Siksek[3]

  • [1] Université Louis Pasteur U. F. R. de mathématiques 7, rue René Descartes 67084 Strasbourg Cedex, France
  • [2] Instituto de Matemáticas Universidad Nacional Autónoma de México C.P. 58089, Morelia, Michoacán, México
  • [3] Mathematics Institute University of Warwick Coventry CV4 7AL, United Kingdom

Journal de Théorie des Nombres de Bordeaux (2008)

  • Volume: 20, Issue: 3, page 555-600
  • ISSN: 1246-7405

Abstract

top
The famous problem of determining all perfect powers in the Fibonacci sequence ( F n ) n 0 and in the Lucas sequence ( L n ) n 0 has recently been resolved [10]. The proofs of those results combine modular techniques from Wiles’ proof of Fermat’s Last Theorem with classical techniques from Baker’s theory and Diophantine approximation. In this paper, we solve the Diophantine equations L n = q a y p , with a > 0 and p 2 , for all primes q < 1087 and indeed for all but 13 primes q < 10 6 . Here the strategy of [10] is not sufficient due to the sizes of the bounds and complicated nature of the Thue equations involved. The novelty in the present paper is the use of the double-Frey approach to simplify the Thue equations and to cope with the large bounds obtained from Baker’s theory.

How to cite

top

Bugeaud, Yann, et al. "Almost powers in the Lucas sequence." Journal de Théorie des Nombres de Bordeaux 20.3 (2008): 555-600. <http://eudml.org/doc/10852>.

@article{Bugeaud2008,
abstract = {The famous problem of determining all perfect powers in the Fibonacci sequence $(F_n)_\{n\ge 0\}$ and in the Lucas sequence $(L_n)_\{n\ge 0\}$ has recently been resolved [10]. The proofs of those results combine modular techniques from Wiles’ proof of Fermat’s Last Theorem with classical techniques from Baker’s theory and Diophantine approximation. In this paper, we solve the Diophantine equations $L_n=q^a y^p$, with $a&gt;0$ and $p\ge 2$, for all primes $q&lt;1087$ and indeed for all but $13$ primes $q &lt; 10^6$. Here the strategy of [10] is not sufficient due to the sizes of the bounds and complicated nature of the Thue equations involved. The novelty in the present paper is the use of the double-Frey approach to simplify the Thue equations and to cope with the large bounds obtained from Baker’s theory.},
affiliation = {Université Louis Pasteur U. F. R. de mathématiques 7, rue René Descartes 67084 Strasbourg Cedex, France; Instituto de Matemáticas Universidad Nacional Autónoma de México C.P. 58089, Morelia, Michoacán, México; Université Louis Pasteur U. F. R. de mathématiques 7, rue René Descartes 67084 Strasbourg Cedex, France; Mathematics Institute University of Warwick Coventry CV4 7AL, United Kingdom},
author = {Bugeaud, Yann, Luca, Florian, Mignotte, Maurice, Siksek, Samir},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Lucas sequence; modular method; double Frey method; linear form in two or three logarithms; Thue equation},
language = {eng},
number = {3},
pages = {555-600},
publisher = {Université Bordeaux 1},
title = {Almost powers in the Lucas sequence},
url = {http://eudml.org/doc/10852},
volume = {20},
year = {2008},
}

TY - JOUR
AU - Bugeaud, Yann
AU - Luca, Florian
AU - Mignotte, Maurice
AU - Siksek, Samir
TI - Almost powers in the Lucas sequence
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 3
SP - 555
EP - 600
AB - The famous problem of determining all perfect powers in the Fibonacci sequence $(F_n)_{n\ge 0}$ and in the Lucas sequence $(L_n)_{n\ge 0}$ has recently been resolved [10]. The proofs of those results combine modular techniques from Wiles’ proof of Fermat’s Last Theorem with classical techniques from Baker’s theory and Diophantine approximation. In this paper, we solve the Diophantine equations $L_n=q^a y^p$, with $a&gt;0$ and $p\ge 2$, for all primes $q&lt;1087$ and indeed for all but $13$ primes $q &lt; 10^6$. Here the strategy of [10] is not sufficient due to the sizes of the bounds and complicated nature of the Thue equations involved. The novelty in the present paper is the use of the double-Frey approach to simplify the Thue equations and to cope with the large bounds obtained from Baker’s theory.
LA - eng
KW - Lucas sequence; modular method; double Frey method; linear form in two or three logarithms; Thue equation
UR - http://eudml.org/doc/10852
ER -

References

top
  1. C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, User’s guide to PARI-GP, version 2.3.2. (See also http://pari.math.u-bordeaux.fr/) 
  2. M. A. Bennett, C. M. Skinner, Ternary Diophantine equations via Galois representations and modular forms. Canad. J. Math. 56 (2004), 23–54. Zbl1053.11025MR2031121
  3. Yu. Bilu, G. Hanrot, Solving Thue equations of high degree. J. Number Theory 60 (1996), 373–392. Zbl0867.11017MR1412969
  4. W. Bosma, J. Cannon, C. Playoust: The Magma Algebra System I: The User Language. J. Symb. Comp. 24 (1997), 235–265. (See also http://www.maths.usyd.edu.au:8000/u/magma/) Zbl0898.68039MR1484478
  5. Y. Bugeaud, K. Győry, Bounds for the solutions of unit equations. Acta Arith. 74 (1996), 67–80. Zbl0861.11023MR1367579
  6. Y. Bugeaud, K. Győry, Bounds for the solutions of Thue-Mahler equations and norm form equations. Acta. Arith. 74 (1996), 273–292. Zbl0861.11024MR1373714
  7. Y. Bugeaud, F. Luca, M. Mignotte, S. Siksek, Perfect Powers from Products of Terms in Lucas Sequences, J. reine angew. Math. 611 (2007), 109–129. Zbl1137.11011MR2360605
  8. Y. Bugeaud, M. Mignotte, Y. Roy, T. N. Shorey, The equation ( x n - 1 ) / ( x - 1 ) = y q has no solutions with x square, Math. Proc. Camb. Phil. Soc. 127 (1999), 353–372. Zbl0940.11020MR1713115
  9. Y. Bugeaud, M. Mignotte, S. Siksek, Sur les nombres de Fibonacci de la forme q k y p , C. R. Acad. Sci. Paris, Ser. I 339 (2004), 327–330. Zbl1113.11010MR2092057
  10. Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. of Math. 163 (2006), no. 3, 969–1018. Zbl1113.11021MR2215137
  11. Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations II. The Lebesgue–Nagell Equation. Compositio Mathematica 142 (2006), 31–62. Zbl1128.11013MR2196761
  12. Y. Bugeaud, M. Mignotte, S. Siksek, A multi-Frey approach to some multi-parameter families of Diophantine equations. Can. J. Math., 60 (2008), 491–519. Zbl1156.11014MR2414954
  13. H. Cohen, Number Theory II. Analytic and Modern Methods. GTM, Springer-Verlag, 2007. Zbl1119.11002
  14. J. E. Cremona, Algorithms for modular elliptic curves, 2nd edition, Cambridge University Press, 1996. Zbl0872.14041MR1201151
  15. J. E. Cremona, Elliptic curve data, http://www.maths.nott.ac.uk/personal/jec/ Zbl01.0253.01
  16. A. Dujella, A. Pethő, A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49(1998), 291–306. Zbl0911.11018MR1645552
  17. K. Győry, K. Yu, Bounds for the solutions of S -unit equations and decomposable form equations. Acta Arith. 123 (2006), 9–41. Zbl1163.11026MR2232500
  18. G. Hanrot, Solving Thue equations without the full unit group. Math. Comp. 69 (2000), 395–405. Zbl0937.11063MR1651759
  19. A. Kraus, Majorations effectives pour l’équation de Fermat généralisée. Can. J. Math. 49 (1997), 1139–1161. Zbl0908.11017MR1611640
  20. A. Kraus, J. Oesterlé, Sur une question de B. Mazur. Math. Ann. 293 (1992), 259–275. Zbl0773.14017MR1166121
  21. E. Landau, Verallgemeinerung eines Pólyaschen Satzes auf algebraische Zahlkörper. Nachr. Kgl. Ges. Wiss. Göttingen, Math.-Phys. Kl. (1918), 478–488. Zbl46.0267.01
  22. M. Laurent, M. Mignotte, Y. Nesterenko, Formes linéares en deux logarithmes et déterminants d’interpolation. J. Number Theory 55 (1995), 255–265. Zbl0843.11036MR1366574
  23. H. W. Lenstra, Jr., Algorithms in algebraic number theory. Bull. Amer. Math. Soc. 26 (1992), 211–244. Zbl0759.11046MR1129315
  24. R. J. McIntosh, E. L. Roettger, A search for Fibonacci-Wiefrich and Wolstenholme primes. Math. Comp. 76 (2007), 2087–2094. Zbl1139.11003MR2336284
  25. E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125–180. English transl. in Izv. Math. 64 (2000), 1217–1269. Zbl1013.11043MR1817252
  26. M. Mignotte, Entiers algébriques dont les conjugués sont proches du cercle unité. Séminaire Delange–Pisot–Poitou, 19e année: 1977/78, Théorie des nombres, Fasc. 2, Exp. No. 39, 6 pp., Secrétariat Math., Paris, 1978. Zbl0424.12002MR520328
  27. M. Mignotte, A kit on linear forms in three logarithms, http://www-irma.u-strasbg.fr/~bugeaud/travaux/kit.pdf Zbl1198.11071
  28. W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers. Springer-Verlag, Berlin, 1990. Zbl0717.11045MR1055830
  29. I. Schur, Untersuchungen über algebraische Gleichungen. I: Bemerkungen zu einem Satz von E. Schmidt. Preuss. Akad. Sitzungsber. (1933), 403–428. Zbl0007.00101
  30. T. N. Shorey, R. Tijdeman, Exponential Diophantine equations. Cambridge Tracts in Mathematics 87, Cambridge University Press, Cambridge, 1986. Zbl0606.10011MR891406
  31. C. L. Siegel, Abschätzung von Einheiten. Nachr. Akad. Wiss. Göttingen II, Math.-Phys. Kl., Nr. 9, (1969), 71–86. Zbl0186.36703MR249395
  32. W. A. Stein, Modular Forms: A Computational Approach. American Mathematical Society, Graduate Studies in Mathematics 79, 2007. Zbl1110.11015MR2289048
  33. Z. H.  Sun, Z. W. Sun, Fibonacci numbers and Fermat’s last theorem. Acta Arith. 60 (1992), 371–388. Zbl0725.11009MR1159353
  34. P. M. Voutier, An effective lower bound for the height of algebraic numbers. Acta Arith. 74 (1996), 81–95. Zbl0838.11065MR1367580
  35. D. D. Wall, Fibonacci series modulo m . Amer. Math. Monthly 67 (1960), 525–532. Zbl0101.03201MR120188

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.