Almost powers in the Lucas sequence
Yann Bugeaud[1]; Florian Luca[2]; Maurice Mignotte[1]; Samir Siksek[3]
- [1] Université Louis Pasteur U. F. R. de mathématiques 7, rue René Descartes 67084 Strasbourg Cedex, France
- [2] Instituto de Matemáticas Universidad Nacional Autónoma de México C.P. 58089, Morelia, Michoacán, México
- [3] Mathematics Institute University of Warwick Coventry CV4 7AL, United Kingdom
Journal de Théorie des Nombres de Bordeaux (2008)
- Volume: 20, Issue: 3, page 555-600
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBugeaud, Yann, et al. "Almost powers in the Lucas sequence." Journal de Théorie des Nombres de Bordeaux 20.3 (2008): 555-600. <http://eudml.org/doc/10852>.
@article{Bugeaud2008,
abstract = {The famous problem of determining all perfect powers in the Fibonacci sequence $(F_n)_\{n\ge 0\}$ and in the Lucas sequence $(L_n)_\{n\ge 0\}$ has recently been resolved [10]. The proofs of those results combine modular techniques from Wiles’ proof of Fermat’s Last Theorem with classical techniques from Baker’s theory and Diophantine approximation. In this paper, we solve the Diophantine equations $L_n=q^a y^p$, with $a>0$ and $p\ge 2$, for all primes $q<1087$ and indeed for all but $13$ primes $q < 10^6$. Here the strategy of [10] is not sufficient due to the sizes of the bounds and complicated nature of the Thue equations involved. The novelty in the present paper is the use of the double-Frey approach to simplify the Thue equations and to cope with the large bounds obtained from Baker’s theory.},
affiliation = {Université Louis Pasteur U. F. R. de mathématiques 7, rue René Descartes 67084 Strasbourg Cedex, France; Instituto de Matemáticas Universidad Nacional Autónoma de México C.P. 58089, Morelia, Michoacán, México; Université Louis Pasteur U. F. R. de mathématiques 7, rue René Descartes 67084 Strasbourg Cedex, France; Mathematics Institute University of Warwick Coventry CV4 7AL, United Kingdom},
author = {Bugeaud, Yann, Luca, Florian, Mignotte, Maurice, Siksek, Samir},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Lucas sequence; modular method; double Frey method; linear form in two or three logarithms; Thue equation},
language = {eng},
number = {3},
pages = {555-600},
publisher = {Université Bordeaux 1},
title = {Almost powers in the Lucas sequence},
url = {http://eudml.org/doc/10852},
volume = {20},
year = {2008},
}
TY - JOUR
AU - Bugeaud, Yann
AU - Luca, Florian
AU - Mignotte, Maurice
AU - Siksek, Samir
TI - Almost powers in the Lucas sequence
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 3
SP - 555
EP - 600
AB - The famous problem of determining all perfect powers in the Fibonacci sequence $(F_n)_{n\ge 0}$ and in the Lucas sequence $(L_n)_{n\ge 0}$ has recently been resolved [10]. The proofs of those results combine modular techniques from Wiles’ proof of Fermat’s Last Theorem with classical techniques from Baker’s theory and Diophantine approximation. In this paper, we solve the Diophantine equations $L_n=q^a y^p$, with $a>0$ and $p\ge 2$, for all primes $q<1087$ and indeed for all but $13$ primes $q < 10^6$. Here the strategy of [10] is not sufficient due to the sizes of the bounds and complicated nature of the Thue equations involved. The novelty in the present paper is the use of the double-Frey approach to simplify the Thue equations and to cope with the large bounds obtained from Baker’s theory.
LA - eng
KW - Lucas sequence; modular method; double Frey method; linear form in two or three logarithms; Thue equation
UR - http://eudml.org/doc/10852
ER -
References
top- C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, User’s guide to PARI-GP, version 2.3.2. (See also http://pari.math.u-bordeaux.fr/)
- M. A. Bennett, C. M. Skinner, Ternary Diophantine equations via Galois representations and modular forms. Canad. J. Math. 56 (2004), 23–54. Zbl1053.11025MR2031121
- Yu. Bilu, G. Hanrot, Solving Thue equations of high degree. J. Number Theory 60 (1996), 373–392. Zbl0867.11017MR1412969
- W. Bosma, J. Cannon, C. Playoust: The Magma Algebra System I: The User Language. J. Symb. Comp. 24 (1997), 235–265. (See also http://www.maths.usyd.edu.au:8000/u/magma/) Zbl0898.68039MR1484478
- Y. Bugeaud, K. Győry, Bounds for the solutions of unit equations. Acta Arith. 74 (1996), 67–80. Zbl0861.11023MR1367579
- Y. Bugeaud, K. Győry, Bounds for the solutions of Thue-Mahler equations and norm form equations. Acta. Arith. 74 (1996), 273–292. Zbl0861.11024MR1373714
- Y. Bugeaud, F. Luca, M. Mignotte, S. Siksek, Perfect Powers from Products of Terms in Lucas Sequences, J. reine angew. Math. 611 (2007), 109–129. Zbl1137.11011MR2360605
- Y. Bugeaud, M. Mignotte, Y. Roy, T. N. Shorey, The equation has no solutions with square, Math. Proc. Camb. Phil. Soc. 127 (1999), 353–372. Zbl0940.11020MR1713115
- Y. Bugeaud, M. Mignotte, S. Siksek, Sur les nombres de Fibonacci de la forme , C. R. Acad. Sci. Paris, Ser. I 339 (2004), 327–330. Zbl1113.11010MR2092057
- Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. of Math. 163 (2006), no. 3, 969–1018. Zbl1113.11021MR2215137
- Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations II. The Lebesgue–Nagell Equation. Compositio Mathematica 142 (2006), 31–62. Zbl1128.11013MR2196761
- Y. Bugeaud, M. Mignotte, S. Siksek, A multi-Frey approach to some multi-parameter families of Diophantine equations. Can. J. Math., 60 (2008), 491–519. Zbl1156.11014MR2414954
- H. Cohen, Number Theory II. Analytic and Modern Methods. GTM, Springer-Verlag, 2007. Zbl1119.11002
- J. E. Cremona, Algorithms for modular elliptic curves, 2nd edition, Cambridge University Press, 1996. Zbl0872.14041MR1201151
- J. E. Cremona, Elliptic curve data, http://www.maths.nott.ac.uk/personal/jec/ Zbl01.0253.01
- A. Dujella, A. Pethő, A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49(1998), 291–306. Zbl0911.11018MR1645552
- K. Győry, K. Yu, Bounds for the solutions of -unit equations and decomposable form equations. Acta Arith. 123 (2006), 9–41. Zbl1163.11026MR2232500
- G. Hanrot, Solving Thue equations without the full unit group. Math. Comp. 69 (2000), 395–405. Zbl0937.11063MR1651759
- A. Kraus, Majorations effectives pour l’équation de Fermat généralisée. Can. J. Math. 49 (1997), 1139–1161. Zbl0908.11017MR1611640
- A. Kraus, J. Oesterlé, Sur une question de B. Mazur. Math. Ann. 293 (1992), 259–275. Zbl0773.14017MR1166121
- E. Landau, Verallgemeinerung eines Pólyaschen Satzes auf algebraische Zahlkörper. Nachr. Kgl. Ges. Wiss. Göttingen, Math.-Phys. Kl. (1918), 478–488. Zbl46.0267.01
- M. Laurent, M. Mignotte, Y. Nesterenko, Formes linéares en deux logarithmes et déterminants d’interpolation. J. Number Theory 55 (1995), 255–265. Zbl0843.11036MR1366574
- H. W. Lenstra, Jr., Algorithms in algebraic number theory. Bull. Amer. Math. Soc. 26 (1992), 211–244. Zbl0759.11046MR1129315
- R. J. McIntosh, E. L. Roettger, A search for Fibonacci-Wiefrich and Wolstenholme primes. Math. Comp. 76 (2007), 2087–2094. Zbl1139.11003MR2336284
- E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125–180. English transl. in Izv. Math. 64 (2000), 1217–1269. Zbl1013.11043MR1817252
- M. Mignotte, Entiers algébriques dont les conjugués sont proches du cercle unité. Séminaire Delange–Pisot–Poitou, 19e année: 1977/78, Théorie des nombres, Fasc. 2, Exp. No. 39, 6 pp., Secrétariat Math., Paris, 1978. Zbl0424.12002MR520328
- M. Mignotte, A kit on linear forms in three logarithms, http://www-irma.u-strasbg.fr/~bugeaud/travaux/kit.pdf Zbl1198.11071
- W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers. Springer-Verlag, Berlin, 1990. Zbl0717.11045MR1055830
- I. Schur, Untersuchungen über algebraische Gleichungen. I: Bemerkungen zu einem Satz von E. Schmidt. Preuss. Akad. Sitzungsber. (1933), 403–428. Zbl0007.00101
- T. N. Shorey, R. Tijdeman, Exponential Diophantine equations. Cambridge Tracts in Mathematics 87, Cambridge University Press, Cambridge, 1986. Zbl0606.10011MR891406
- C. L. Siegel, Abschätzung von Einheiten. Nachr. Akad. Wiss. Göttingen II, Math.-Phys. Kl., Nr. 9, (1969), 71–86. Zbl0186.36703MR249395
- W. A. Stein, Modular Forms: A Computational Approach. American Mathematical Society, Graduate Studies in Mathematics 79, 2007. Zbl1110.11015MR2289048
- Z. H. Sun, Z. W. Sun, Fibonacci numbers and Fermat’s last theorem. Acta Arith. 60 (1992), 371–388. Zbl0725.11009MR1159353
- P. M. Voutier, An effective lower bound for the height of algebraic numbers. Acta Arith. 74 (1996), 81–95. Zbl0838.11065MR1367580
- D. D. Wall, Fibonacci series modulo . Amer. Math. Monthly 67 (1960), 525–532. Zbl0101.03201MR120188
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.