Displaying similar documents to “Uniform stabilization of a viscous numerical approximation for a locally damped wave equation”

Observability properties of a semi-discrete 1d wave equation derived from a mixed finite element method on nonuniform meshes

Sylvain Ervedoza (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The goal of this article is to analyze the observability properties for a space semi-discrete approximation scheme derived from a mixed finite element method of the 1d wave equation on nonuniform meshes. More precisely, we prove that observability properties hold uniformly with respect to the mesh-size under some assumptions, which, roughly, measures the lack of uniformity of the meshes, thus extending the work [Castro and Micu, (2006) 413–462] to nonuniform meshes....

Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping

R. Belaouar, T. Colin, G. Gallice, C. Galusinski (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper, we study a Zakharov system coupled to an electron diffusion equation in order to describe laser-plasma interactions. Starting from the Vlasov-Maxwell system, we derive a nonlinear Schrödinger like system which takes into account the energy exchanged between the plasma waves and the electrons via Landau damping. Two existence theorems are established in a subsonic regime. Using a time-splitting, spectral discretizations for the Zakharov system and a finite difference scheme...

Numerical comparisons of two long-wave limit models

Stéphane Labbé, Lionel Paumond (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The Benney-Luke equation (BL) is a model for the evolution of three-dimensional weakly nonlinear, long water waves of small amplitude. In this paper we propose a nearly conservative scheme for the numerical resolution of (BL). Moreover, it is known (Paumond, Differential Integral Equations 16 (2003) 1039–1064; Pego and Quintero, Physica D 132 (1999) 476–496) that (BL) is linked to the Kadomtsev-Petviashvili equation for almost one-dimensional waves propagating in one direction. We study...

A uniformly controllable and implicit scheme for the 1-D wave equation

Arnaud Münch (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

This paper studies the exact controllability of a finite dimensional system obtained by discretizing in space and time the linear 1-D wave system with a boundary control at one extreme. It is known that usual schemes obtained with finite difference or finite element methods are not uniformly controllable with respect to the discretization parameters h and Δ t . We introduce an implicit finite difference scheme which differs from the usual centered one by additional terms of order h 2 and...