Displaying similar documents to “Numerical homogenization of well singularities in the flow transport through heterogeneous porous media: fully discrete scheme”

Mixed finite element approximation for a coupled petroleum reservoir model

Mohamed Amara, Daniela Capatina-Papaghiuc, Bertrand Denel, Peppino Terpolilli (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper, we are interested in the modelling and the finite element approximation of a petroleum reservoir, in axisymmetric form. The flow in the porous medium is governed by the Darcy-Forchheimer equation coupled with a rather exhaustive energy equation. The semi-discretized problem is put under a mixed variational formulation, whose approximation is achieved by means of conservative Raviart-Thomas elements for the fluxes and of piecewise constant elements for the pressure and...

A finite element discretization of the contact between two membranes

Faker Ben Belgacem, Christine Bernardi, Adel Blouza, Martin Vohralík (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

From the fundamental laws of elasticity, we write a model for the contact between two membranes and we perform the analysis of the corresponding system of variational inequalities. We propose a finite element discretization of this problem and prove its well-posedness. We also establish a priori and a posteriori error estimates.

Worst scenario method in homogenization. Linear case

Luděk Nechvátal (2006)

Applications of Mathematics

Similarity:

The paper deals with homogenization of a linear elliptic boundary problem with a specific class of uncertain coefficients describing composite materials with periodic structure. Instead of stochastic approach to the problem, we use the worst scenario method due to Hlaváček (method of reliable solution). A few criterion functionals are introduced. We focus on the range of the homogenized coefficients from knowledge of the ranges of individual components in the composite, on the values...

Verification of functional a posteriori error estimates for obstacle problem in 2D

Petr Harasim, Jan Valdman (2014)

Kybernetika

Similarity:

We verify functional a posteriori error estimates proposed by S. Repin for a class of obstacle problems in two space dimensions. New benchmarks with known analytical solution are constructed based on one dimensional benchmark introduced by P. Harasim and J. Valdman. Numerical approximation of the solution of the obstacle problem is obtained by the finite element method using bilinear elements on a rectangular mesh. Error of the approximation is measured by a functional majorant. The...

Opposing flows in a one dimensional convection-diffusion problem

Eugene O’Riordan (2012)

Open Mathematics

Similarity:

In this paper, we examine a particular class of singularly perturbed convection-diffusion problems with a discontinuous coefficient of the convective term. The presence of a discontinuous convective coefficient generates a solution which mimics flow moving in opposing directions either side of some flow source. A particular transmission condition is imposed to ensure that the differential operator is stable. A piecewise-uniform Shishkin mesh is combined with a monotone finite difference...

Stabilization methods in relaxed micromagnetism

Stefan A. Funken, Andreas Prohl (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The magnetization of a ferromagnetic sample solves a non-convex variational problem, where its relaxation by convexifying the energy density resolves relevant macroscopic information. The numerical analysis of the relaxed model has to deal with a constrained convex but degenerated, nonlocal energy functional in mixed formulation for magnetic potential u and magnetization 𝐦 . In [C. Carstensen and A. Prohl, Numer. Math. 90 (2001) 65–99], the conforming P 1 - ( P 0 ) d -element in d = 2 , 3 spatial dimensions...