A finite element discretization of the contact between two membranes
Faker Ben Belgacem; Christine Bernardi; Adel Blouza; Martin Vohralík
- Volume: 43, Issue: 1, page 33-52
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBelgacem, Faker Ben, et al. "A finite element discretization of the contact between two membranes." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 43.1 (2009): 33-52. <http://eudml.org/doc/245210>.
@article{Belgacem2009,
abstract = {From the fundamental laws of elasticity, we write a model for the contact between two membranes and we perform the analysis of the corresponding system of variational inequalities. We propose a finite element discretization of this problem and prove its well-posedness. We also establish a priori and a posteriori error estimates.},
author = {Belgacem, Faker Ben, Bernardi, Christine, Blouza, Adel, Vohralík, Martin},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {unilateral contact; variational inequalities; finite elements; a priori and a posteriori analysis; well-posedness; error estimates},
language = {eng},
number = {1},
pages = {33-52},
publisher = {EDP-Sciences},
title = {A finite element discretization of the contact between two membranes},
url = {http://eudml.org/doc/245210},
volume = {43},
year = {2009},
}
TY - JOUR
AU - Belgacem, Faker Ben
AU - Bernardi, Christine
AU - Blouza, Adel
AU - Vohralík, Martin
TI - A finite element discretization of the contact between two membranes
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2009
PB - EDP-Sciences
VL - 43
IS - 1
SP - 33
EP - 52
AB - From the fundamental laws of elasticity, we write a model for the contact between two membranes and we perform the analysis of the corresponding system of variational inequalities. We propose a finite element discretization of this problem and prove its well-posedness. We also establish a priori and a posteriori error estimates.
LA - eng
KW - unilateral contact; variational inequalities; finite elements; a priori and a posteriori analysis; well-posedness; error estimates
UR - http://eudml.org/doc/245210
ER -
References
top- [1] M. Ainsworth, J.T. Oden and C.Y. Lee, Local a posteriori error estimators for variational inequalities. Numer. Methods Partial Differential Equations 9 (1993) 23–33. Zbl0768.65032MR1193438
- [2] F. Ali Mehmeti and S. Nicaise, Nonlinear interaction problems. Nonlinear Anal. Theory Methods Appl. 20 (1993) 27–61. Zbl0817.35035MR1199063
- [3] C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Collection Mathématiques & Applications 45. Springer-Verlag (2004). Zbl1063.65119MR2068204
- [4] H. Brezis and G. Stampacchia, Sur la régularité de la solution d’inéquations elliptiques. Bull. Soc. Math. France 96 (1968) 153–180. Zbl0165.45601MR239302
- [5] F. Brezzi, W.W. Hager and P.-A. Raviart, Error estimates for the finite element solution of variational inequalities, II. Mixed methods. Numer. Math. 31 (1978-1979) 1–16. Zbl0427.65077MR508584
- [6] Z. Chen and R.H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527–548. Zbl0943.65075MR1742264
- [7] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, New York, Oxford (1978). Zbl0383.65058MR520174
- [8] P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1991) 17–351. Zbl0875.65086MR1115237
- [9] P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 R2 (1975) 77–84. Zbl0368.65008MR400739
- [10] I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels. Dunod & Gauthier-Villars (1974). Zbl0281.49001MR463993
- [11] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). Zbl0585.65077MR851383
- [12] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman (1985). Zbl0695.35060MR775683
- [13] J. Haslinger, I. Hlaváček and J. Nečas, Numerical methods for unilateral problems in solid mechanics, in Handbook of Numerical Analysis, Vol. IV, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1996) 313–485. Zbl0873.73079MR1422506
- [14] P. Hild and S. Nicaise, Residual a posteriori error estimators for contact problems in elasticity. ESAIM: M2AN 41 (2007) 897–923. Zbl1140.74024MR2363888
- [15] J.-L. Lions and G. Stampacchia, Variational inequalities. Comm. Pure Appl. Math. 20 (1967) 493–519. Zbl0152.34601MR216344
- [16] R.H. Nochetto, K.G. Siebert and A. Veeser, Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95 (2003) 163–195. Zbl1027.65089MR1993943
- [17] G. Raugel, Résolution numérique par une méthode d’éléments finis du problème de Dirichlet pour le laplacien dans un polygone. C. R. Acad. Sci. Paris Sér. A-B 286 (1978) A791–A794. Zbl0377.65058MR497667
- [18] L. Slimane, A. Bendali and P. Laborde, Mixed formulations for a class of variational inequalities. ESAIM: M2AN 38 (2004) 177–201. Zbl1100.65059MR2073936
- [19] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner (1996). Zbl0853.65108
- [20] B.I. Wohlmuth, An a posteriori error estimator for two body contact problems on non-matching meshes. J. Sci. Computing 33 (2007) 25–45. Zbl1127.74047MR2338331
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.