A finite element discretization of the contact between two membranes

Faker Ben Belgacem; Christine Bernardi; Adel Blouza; Martin Vohralík

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2009)

  • Volume: 43, Issue: 1, page 33-52
  • ISSN: 0764-583X

Abstract

top
From the fundamental laws of elasticity, we write a model for the contact between two membranes and we perform the analysis of the corresponding system of variational inequalities. We propose a finite element discretization of this problem and prove its well-posedness. We also establish a priori and a posteriori error estimates.

How to cite

top

Belgacem, Faker Ben, et al. "A finite element discretization of the contact between two membranes." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 43.1 (2009): 33-52. <http://eudml.org/doc/245210>.

@article{Belgacem2009,
abstract = {From the fundamental laws of elasticity, we write a model for the contact between two membranes and we perform the analysis of the corresponding system of variational inequalities. We propose a finite element discretization of this problem and prove its well-posedness. We also establish a priori and a posteriori error estimates.},
author = {Belgacem, Faker Ben, Bernardi, Christine, Blouza, Adel, Vohralík, Martin},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {unilateral contact; variational inequalities; finite elements; a priori and a posteriori analysis; well-posedness; error estimates},
language = {eng},
number = {1},
pages = {33-52},
publisher = {EDP-Sciences},
title = {A finite element discretization of the contact between two membranes},
url = {http://eudml.org/doc/245210},
volume = {43},
year = {2009},
}

TY - JOUR
AU - Belgacem, Faker Ben
AU - Bernardi, Christine
AU - Blouza, Adel
AU - Vohralík, Martin
TI - A finite element discretization of the contact between two membranes
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2009
PB - EDP-Sciences
VL - 43
IS - 1
SP - 33
EP - 52
AB - From the fundamental laws of elasticity, we write a model for the contact between two membranes and we perform the analysis of the corresponding system of variational inequalities. We propose a finite element discretization of this problem and prove its well-posedness. We also establish a priori and a posteriori error estimates.
LA - eng
KW - unilateral contact; variational inequalities; finite elements; a priori and a posteriori analysis; well-posedness; error estimates
UR - http://eudml.org/doc/245210
ER -

References

top
  1. [1] M. Ainsworth, J.T. Oden and C.Y. Lee, Local a posteriori error estimators for variational inequalities. Numer. Methods Partial Differential Equations 9 (1993) 23–33. Zbl0768.65032MR1193438
  2. [2] F. Ali Mehmeti and S. Nicaise, Nonlinear interaction problems. Nonlinear Anal. Theory Methods Appl. 20 (1993) 27–61. Zbl0817.35035MR1199063
  3. [3] C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Collection Mathématiques & Applications 45. Springer-Verlag (2004). Zbl1063.65119MR2068204
  4. [4] H. Brezis and G. Stampacchia, Sur la régularité de la solution d’inéquations elliptiques. Bull. Soc. Math. France 96 (1968) 153–180. Zbl0165.45601MR239302
  5. [5] F. Brezzi, W.W. Hager and P.-A. Raviart, Error estimates for the finite element solution of variational inequalities, II. Mixed methods. Numer. Math. 31 (1978-1979) 1–16. Zbl0427.65077MR508584
  6. [6] Z. Chen and R.H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527–548. Zbl0943.65075MR1742264
  7. [7] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, New York, Oxford (1978). Zbl0383.65058MR520174
  8. [8] P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1991) 17–351. Zbl0875.65086MR1115237
  9. [9] P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 R2 (1975) 77–84. Zbl0368.65008MR400739
  10. [10] I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels. Dunod & Gauthier-Villars (1974). Zbl0281.49001MR463993
  11. [11] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). Zbl0585.65077MR851383
  12. [12] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman (1985). Zbl0695.35060MR775683
  13. [13] J. Haslinger, I. Hlaváček and J. Nečas, Numerical methods for unilateral problems in solid mechanics, in Handbook of Numerical Analysis, Vol. IV, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1996) 313–485. Zbl0873.73079MR1422506
  14. [14] P. Hild and S. Nicaise, Residual a posteriori error estimators for contact problems in elasticity. ESAIM: M2AN 41 (2007) 897–923. Zbl1140.74024MR2363888
  15. [15] J.-L. Lions and G. Stampacchia, Variational inequalities. Comm. Pure Appl. Math. 20 (1967) 493–519. Zbl0152.34601MR216344
  16. [16] R.H. Nochetto, K.G. Siebert and A. Veeser, Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95 (2003) 163–195. Zbl1027.65089MR1993943
  17. [17] G. Raugel, Résolution numérique par une méthode d’éléments finis du problème de Dirichlet pour le laplacien dans un polygone. C. R. Acad. Sci. Paris Sér. A-B 286 (1978) A791–A794. Zbl0377.65058MR497667
  18. [18] L. Slimane, A. Bendali and P. Laborde, Mixed formulations for a class of variational inequalities. ESAIM: M2AN 38 (2004) 177–201. Zbl1100.65059MR2073936
  19. [19] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner (1996). Zbl0853.65108
  20. [20] B.I. Wohlmuth, An a posteriori error estimator for two body contact problems on non-matching meshes. J. Sci. Computing 33 (2007) 25–45. Zbl1127.74047MR2338331

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.