Verification of functional a posteriori error estimates for obstacle problem in 2D

Petr Harasim; Jan Valdman

Kybernetika (2014)

  • Volume: 50, Issue: 6, page 978-1002
  • ISSN: 0023-5954

Abstract

top
We verify functional a posteriori error estimates proposed by S. Repin for a class of obstacle problems in two space dimensions. New benchmarks with known analytical solution are constructed based on one dimensional benchmark introduced by P. Harasim and J. Valdman. Numerical approximation of the solution of the obstacle problem is obtained by the finite element method using bilinear elements on a rectangular mesh. Error of the approximation is measured by a functional majorant. The majorant value contains three unknown fields: a gradient field discretized by Raviart-Thomas elements, Lagrange multipliers field discretized by piecewise constant functions and a scalar parameter β . The minimization of the majorant value is realized by an alternate minimization algorithm, whose convergence is discussed. Numerical results validate two estimates, the energy estimate bounding the error of approximation in the energy norm by the difference of energies of discrete and exact solutions and the majorant estimate bounding the difference of energies of discrete and exact solutions by the value of the functional majorant.

How to cite

top

Harasim, Petr, and Valdman, Jan. "Verification of functional a posteriori error estimates for obstacle problem in 2D." Kybernetika 50.6 (2014): 978-1002. <http://eudml.org/doc/262190>.

@article{Harasim2014,
abstract = {We verify functional a posteriori error estimates proposed by S. Repin for a class of obstacle problems in two space dimensions. New benchmarks with known analytical solution are constructed based on one dimensional benchmark introduced by P. Harasim and J. Valdman. Numerical approximation of the solution of the obstacle problem is obtained by the finite element method using bilinear elements on a rectangular mesh. Error of the approximation is measured by a functional majorant. The majorant value contains three unknown fields: a gradient field discretized by Raviart-Thomas elements, Lagrange multipliers field discretized by piecewise constant functions and a scalar parameter $\beta $. The minimization of the majorant value is realized by an alternate minimization algorithm, whose convergence is discussed. Numerical results validate two estimates, the energy estimate bounding the error of approximation in the energy norm by the difference of energies of discrete and exact solutions and the majorant estimate bounding the difference of energies of discrete and exact solutions by the value of the functional majorant.},
author = {Harasim, Petr, Valdman, Jan},
journal = {Kybernetika},
keywords = {obstacle problem; a posteriori error estimate; functional majorant; finite element method; variational inequalities; Raviart–Thomas elements; obstacle problem; a-posteriori error estimates; finite element method; variational inequalities; functional majorant},
language = {eng},
number = {6},
pages = {978-1002},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Verification of functional a posteriori error estimates for obstacle problem in 2D},
url = {http://eudml.org/doc/262190},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Harasim, Petr
AU - Valdman, Jan
TI - Verification of functional a posteriori error estimates for obstacle problem in 2D
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 6
SP - 978
EP - 1002
AB - We verify functional a posteriori error estimates proposed by S. Repin for a class of obstacle problems in two space dimensions. New benchmarks with known analytical solution are constructed based on one dimensional benchmark introduced by P. Harasim and J. Valdman. Numerical approximation of the solution of the obstacle problem is obtained by the finite element method using bilinear elements on a rectangular mesh. Error of the approximation is measured by a functional majorant. The majorant value contains three unknown fields: a gradient field discretized by Raviart-Thomas elements, Lagrange multipliers field discretized by piecewise constant functions and a scalar parameter $\beta $. The minimization of the majorant value is realized by an alternate minimization algorithm, whose convergence is discussed. Numerical results validate two estimates, the energy estimate bounding the error of approximation in the energy norm by the difference of energies of discrete and exact solutions and the majorant estimate bounding the difference of energies of discrete and exact solutions by the value of the functional majorant.
LA - eng
KW - obstacle problem; a posteriori error estimate; functional majorant; finite element method; variational inequalities; Raviart–Thomas elements; obstacle problem; a-posteriori error estimates; finite element method; variational inequalities; functional majorant
UR - http://eudml.org/doc/262190
ER -

References

top
  1. Ainsworth, M., Oden, J. T., A Posteriori Error Estimation in Finite Element Analysis., Wiley and Sons, New York 2000. Zbl1008.65076MR1885308
  2. Babuška, I., Strouboulis, T., The finite Element Method and its Reliability., Oxford University Press, New York 2001. MR1857191
  3. Bangerth, W., Rannacher, R., Adaptive Finite Element Methods for Differential Equations., Birkhäuser, Berlin 2003. Zbl1020.65058MR1960405
  4. Braess, D., Hoppe, R. H. W., Schöberl, J., 10.1007/s00791-008-0104-2, Comput. Vis. Sci. 11 (2008), 351-362. MR2425501DOI10.1007/s00791-008-0104-2
  5. Brezi, F., Hager, W. W., Raviart, P. A., 10.1007/BF01404345, Numer. Math. 28 (1977), 431-443. MR0448949DOI10.1007/BF01404345
  6. Buss, H., Repin, S., A posteriori error estimates for boundary value problems with obstacles., In: Proc. 3nd European Conference on Numerical Mathematics and Advanced Applications, Jÿvaskylä 1999, World Scientific 2000, pp. 162-170. Zbl0968.65041MR1936177
  7. Carstensen, C., Merdon, C., 10.1002/num.21728, Numer. Methods Partial Differential Equations 29 (2013), 667-692. MR3022903DOI10.1002/num.21728
  8. Dostál, Z., Optimal Quadratic Programming Algorithms., Springer 2009. MR2492434
  9. Falk, R. S., 10.1090/S0025-5718-1974-0391502-8, Math. Comput. 28 (1974), 963-971. Zbl0297.65061MR0391502DOI10.1090/S0025-5718-1974-0391502-8
  10. Fuchs, M., Repin, S., 10.1080/01630563.2011.571802, Numer. Funct. Anal. Optim. 32 (2011), 610-640. MR2795532DOI10.1080/01630563.2011.571802
  11. Glowinski, R., Lions, J. L., Trémolieres, R., Numerical Analysis of Variational Inequalities., North-Holland 1981. Zbl0463.65046MR0635927
  12. Gustafsson, B., 10.1016/0362-546X(86)90119-7, Nonlinear Anal. 10 (1986), 12, 1487-1490. Zbl0612.49005MR0869557DOI10.1016/0362-546X(86)90119-7
  13. Valdman, P. Harasim AD J., Verification of functional a posteriori error estimates for obstacle problem in 1D., Kybernetika 49 (2013), 5, 738-754. MR3182637
  14. Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J., Solution of variational inequalities in mechanics., Applied Mathematical Sciences 66, Springer-Verlag, New York 1988. Zbl0654.73019MR0952855
  15. Kinderlehrer, D., Stampacchia, G., An Introduction to Variational Inequalities and Their Applications., Academic Press, New York 1980. Zbl0988.49003MR0567696
  16. Lions, J. L., Stampacchia, G., 10.1002/cpa.3160200302, Comm. Pure Appl. Math. 20 (1967), 493-519. Zbl0152.34601MR0216344DOI10.1002/cpa.3160200302
  17. Neittaanmäki, P., Repin, S., Reliable Methods for Computer Simulation (Error Control and A Posteriori Estimates)., Elsevier, 2004. Zbl1076.65093MR2095603
  18. Nochetto, R. H., Seibert, K. G., Veeser, A., 10.1007/s00211-002-0411-3, Numer. Math. 95 (2003), 631-658. MR1993943DOI10.1007/s00211-002-0411-3
  19. Rahman, T., Valdman, J., 10.1016/j.amc.2011.08.043, Appl. Math. Comput. 219 (2013), 7151-7158. Zbl1288.65169MR3030557DOI10.1016/j.amc.2011.08.043
  20. Repin, S., 10.1090/S0025-5718-99-01190-4, Math. Comput. 69 (230) (2000), 481-500. Zbl0949.65070MR1681096DOI10.1090/S0025-5718-99-01190-4
  21. Repin, S., A posteriori error estimation for nonlinear variational problems by duality theory., Zapiski Nauchn. Semin. POMI 243 (1997), 201-214. Zbl0904.65064MR1629741
  22. Repin, S., Estimates of deviations from exact solutions of elliptic variational inequalities., Zapiski Nauchn. Semin, POMI 271 (2000), 188-203. Zbl1118.35320MR1810617
  23. Repin, S., A Posteriori Estimates for Partial Differential Equations., Walter de Gruyter, Berlin 2008. Zbl1162.65001MR2458008
  24. Repin, S., Valdman, J., 10.1515/JNUM.2008.003, J. Numer. Math. 16 (2008), 1, 51-81. Zbl1146.65054MR2396672DOI10.1515/JNUM.2008.003
  25. Repin, S., Valdman, J., 10.2478/s11533-009-0035-2, Centr. Eur. J. Math. 7 (2009), 3, 506-519. Zbl1269.74202MR2534470DOI10.2478/s11533-009-0035-2
  26. Ulbrich, M., Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces., SIAM, 2011. Zbl1235.49001MR2839219
  27. Valdman, J., 10.1155/2009/164519, Adv. Numer. Anal. (2009). Zbl1200.65095MR2739760DOI10.1155/2009/164519
  28. Zou, Q., Veeser, A., Kornhuber, R., Gräser, C., 10.1007/s00211-011-0364-5, Numer. Math. 117 (2012), 4, 653-677. Zbl1218.65067MR2776914DOI10.1007/s00211-011-0364-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.