BMO-scale of distribution on n

René Erlín Castillo; Julio C. Ramos Fernández

Czechoslovak Mathematical Journal (2008)

  • Volume: 58, Issue: 2, page 505-516
  • ISSN: 0011-4642

Abstract

top
Let S ' be the class of tempered distributions. For f S ' we denote by J - α f the Bessel potential of f of order α . We prove that if J - α f B M O , then for any λ ( 0 , 1 ) , J - α ( f ) λ B M O , where ( f ) λ = λ - n f ( φ ( λ - 1 · ) ) , φ S . Also, we give necessary and sufficient conditions in order that the Bessel potential of a tempered distribution of order α > 0 belongs to the V M O space.

How to cite

top

Castillo, René Erlín, and Fernández, Julio C. Ramos. "BMO-scale of distribution on $\mathbb {R}^n$." Czechoslovak Mathematical Journal 58.2 (2008): 505-516. <http://eudml.org/doc/31226>.

@article{Castillo2008,
abstract = {Let $S^\{\prime \}$ be the class of tempered distributions. For $f\in S^\{\prime \}$ we denote by $J^\{-\alpha \}f$ the Bessel potential of $f$ of order $\alpha $. We prove that if $J^\{-\alpha \}f\in \mathop \{\mathrm \{B\}MO\}$, then for any $\lambda \in (0,1)$, $J^\{-\alpha \}(f)_\lambda \in \mathop \{\mathrm \{B\}MO\}$, where $(f)_\lambda =\lambda ^\{-n\}f(\phi (\lambda ^\{-1\}\cdot ))$, $\phi \in S$. Also, we give necessary and sufficient conditions in order that the Bessel potential of a tempered distribution of order $\alpha >0$ belongs to the $\mathop \{\mathrm \{V\}MO\}$ space.},
author = {Castillo, René Erlín, Fernández, Julio C. Ramos},
journal = {Czechoslovak Mathematical Journal},
keywords = {$\mathop \{\rm BMO\}$; $\mathop \{\rm VMO\}$; John and Niereberg; Bessel potential; Bessel potential},
language = {eng},
number = {2},
pages = {505-516},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {BMO-scale of distribution on $\mathbb \{R\}^n$},
url = {http://eudml.org/doc/31226},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Castillo, René Erlín
AU - Fernández, Julio C. Ramos
TI - BMO-scale of distribution on $\mathbb {R}^n$
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 2
SP - 505
EP - 516
AB - Let $S^{\prime }$ be the class of tempered distributions. For $f\in S^{\prime }$ we denote by $J^{-\alpha }f$ the Bessel potential of $f$ of order $\alpha $. We prove that if $J^{-\alpha }f\in \mathop {\mathrm {B}MO}$, then for any $\lambda \in (0,1)$, $J^{-\alpha }(f)_\lambda \in \mathop {\mathrm {B}MO}$, where $(f)_\lambda =\lambda ^{-n}f(\phi (\lambda ^{-1}\cdot ))$, $\phi \in S$. Also, we give necessary and sufficient conditions in order that the Bessel potential of a tempered distribution of order $\alpha >0$ belongs to the $\mathop {\mathrm {V}MO}$ space.
LA - eng
KW - $\mathop {\rm BMO}$; $\mathop {\rm VMO}$; John and Niereberg; Bessel potential; Bessel potential
UR - http://eudml.org/doc/31226
ER -

References

top
  1. 10.1002/cpa.3160140317, Comm. Pure Appl. Math. 14 (1961), 415–426. (1961) MR0131498DOI10.1002/cpa.3160140317
  2. Functions of bounded mean oscillation, Trans. Amer. Math. Soc. 201 (1975), 391–405. (1975) MR0377518
  3. Singular Integrals and Differentiability Properties of Functions, Princenton University Press, Princenton, NJ, 1970. (1970) Zbl0207.13501MR0290095
  4. An introduction to Analysis, 2nd ed, Prentice Hall, NJ, 2000. (2000) Zbl0951.26001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.