Displaying similar documents to “Closed embeddings into complements of Σ -products”

A generalization of Čech-complete spaces and Lindelöf Σ -spaces

Aleksander V. Arhangel'skii (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The class of s -spaces is studied in detail. It includes, in particular, all Čech-complete spaces, Lindelöf p -spaces, metrizable spaces with the weight 2 ω , but countable non-metrizable spaces and some metrizable spaces are not in it. It is shown that s -spaces are in a duality with Lindelöf Σ -spaces: X is an s -space if and only if some (every) remainder of X in a compactification is a Lindelöf Σ -space [Arhangel’skii A.V., Remainders of metrizable and close to metrizable spaces, Fund. Math....

Addition theorems and D -spaces

Aleksander V. Arhangel'skii, Raushan Z. Buzyakova (2002)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is proved that if a regular space X is the union of a finite family of metrizable subspaces then X is a D -space in the sense of E. van Douwen. It follows that if a regular space X of countable extent is the union of a finite collection of metrizable subspaces then X is Lindelöf. The proofs are based on a principal result of this paper: every space with a point-countable base is a D -space. Some other new results on the properties of spaces which are unions of a finite collection of...

On the extent of star countable spaces

Ofelia Alas, Lucia Junqueira, Jan Mill, Vladimir Tkachuk, Richard Wilson (2011)

Open Mathematics

Similarity:

For a topological property P, we say that a space X is star Pif for every open cover Uof the space X there exists Y ⊂ X such that St(Y,U) = X and Y has P. We consider star countable and star Lindelöf spaces establishing, among other things, that there exists first countable pseudocompact spaces which are not star Lindelöf. We also describe some classes of spaces in which star countability is equivalent to countable extent and show that a star countable space with a dense σ-compact subspace...