Displaying similar documents to “Guaranteed and robust a posteriori error estimates for singularly perturbed reaction–diffusion problems”

An equilibrated residual method with a computable error approximation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes

Sergey Grosman (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

Singularly perturbed reaction-diffusion problems exhibit in general solutions with anisotropic features, strong boundary and/or interior layers. This anisotropy is reflected in a discretization by using meshes with anisotropic elements. The quality of the numerical solution rests on the robustness of the error estimator with respect to both, the perturbation parameters of the problem and the anisotropy of the mesh. The equilibrated residual method has been shown to provide one of...

Mesh Refinement For Stabilized Convection Diffusion Equations

B. Achchab, M. El Fatini, A. Souissi (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

We derive a residual a posteriori error estimates for the subscales stabilization of convection diffusion equation. The estimator yields upper bound on the error which is global and lower bound that is local

Robust local problem error estimation for a singularly perturbed problem on anisotropic finite element meshes

Gerd Kunert (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Singularly perturbed problems often yield solutions with strong directional features, e.g. with boundary layers. Such anisotropic solutions lend themselves to adapted, anisotropic discretizations. The quality of the corresponding numerical solution is a key issue in any computational simulation. To this end we present a new robust error estimator for a singularly perturbed reaction–diffusion problem. In contrast to conventional estimators, our proposal is suitable for anisotropic finite...

A posteriori error estimates for a nonconforming finite element discretization of the heat equation

Serge Nicaise, Nadir Soualem (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The paper presents an a posteriori error estimator for a (piecewise linear) nonconforming finite element approximation of the heat equation in d , d = 2 or 3, using backward Euler’s scheme. For this discretization, we derive a residual indicator, which use a spatial residual indicator based on the jumps of normal and tangential derivatives of the nonconforming approximation and a time residual indicator based on the jump of broken gradients at each time step. Lower and upper bounds form the...