Displaying similar documents to “A penalty method for topology optimization subject to a pointwise state constraint”

Removing holes in topological shape optimization

Maatoug Hassine, Philippe Guillaume (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The gradient based topological optimization tools introduced during the last ten years tend naturally to modify the topology of a domain by creating small holes inside the domain. Once these holes have been created, they usually remain unchanged, at least during the topological phase of the optimization algorithm. In this paper, a new asymptotic expansion is introduced which allows to decide whether an existing hole must be removed or not for improving the cost function. Then, two numerical...

Shape and topology optimization of the robust compliance via the level set method

François Jouve, Grégoire Allaire, Frédéric de Gournay (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The goal of this paper is to study the so-called worst-case or robust optimal design problem for minimal compliance. In the context of linear elasticity we seek an optimal shape which minimizes the largest, or worst, compliance when the loads are subject to some unknown perturbations. We first prove that, for a fixed shape, there exists indeed a worst perturbation (possibly non unique) that we characterize as the maximizer of a nonlinear energy. We also propose a stable algorithm to...

Numerical minimization of eigenmodes of a membrane with respect to the domain

Édouard Oudet (2004)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper we introduce a numerical approach adapted to the minimization of the eigenmodes of a membrane with respect to the domain. This method is based on the combination of the Level Set method of S. Osher and J.A. Sethian with the relaxed approach. This algorithm enables both changing the topology and working on a fixed regular grid.